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Performance analysis of a combined cooling heating and power (CCHP) system 

with an infectious waste incinerator 
 

Chindamanee Pokson1,2, Nattaporn Chaiyat1,2,3,* 
 

1School of Renewable Energy, Maejo University, Thailand 
2Thermal Design and Technology Laboratory, Thailand 

3Excellence Center on Environment Friendly Smart Agriculture and Renewable Energy Technology, Thailand  

 
Abstract:  

This work presents the performance analysis of a combined cooling, heating, and power (CCHP) system with an 

infectious waste incinerator. Refuse-derived fuel type 3 (RDF-3) from infectious medical waste is the main heat source 

of the CCHP system. While the RDF-3 sterilized via shredding and heating processes is used to generate hot fluid with 

mass flow rate of 53.69 kg/h. The CCHP system comprises a 12.93-kWe organic Rankine cycle (ORC), a 10-kW 

absorption unit, and a 22.14-kW centralized drying room. The CCHP can produce an energy output of 45.06 kW with 

energy efficiency of 10.95%. The energy cost of 0.158 USD/kWh. The environmental impact in terms of carbon dioxide 

emissions of 0.2567 kg CO2-eq/kWh. 

 

Keywords: Combined Cooling Heating and Power (CCHP); Energy Efficiency; Infectious Medical Waste; Refuse-

derived Fuel; Waste-to- energy 

 

*Corresponding author. Tel.: +66-8252-3088 

 E-mail: benz178tii@hotmail.com 

 

1. Introduction 

The outbreak of COVID-19 has led to an increase in infectious medical waste. Infectious medical 

waste can impact human health and can pollute the environment without proper management. 
Infectious medical waste, obtained as RDF-3 through a sterilization process, can be used for energy. 

This usage is in accordance with the Alternative Energy Development Plan 2018 (AEDP2018) to 

replace 30% of the final energy consumption by 2037 (EPPO, 2021). 

 

Waste-to-energy (WtE) technology has been reported by various researchers, including Yatsunthea 

and Chaiyat (2020) presented the power generation process of municipal waste involving an organic 

Rankine cycle (ORC) with an incinerator. The main heat source of refuse-derived fuel type (RDF-3) 

from infectious and municipal waste was obtained after sterilization via shredding and heating 

processes at a low heating value of 26.92 MJ/kg. The contributions of electricity to the gross power 

and ORC efficiency reached 23.65 kWe and 8.05%, respectively. Ma et al. (2021) reported that the 

primary energy rate did not exceed 1% and that the difference in the primary energy saving rate was 
not more than 0.5%. This finding reflects the optimization performance of the CCHP system. 

Mehregan et al. (2022) proposed a CCHP system based on a trigeneration system driven with a gas 

engine and flat-plate solar collector. The overall efficiency of the trigeneration system was found to 

reach approximately 97%. Chaiyat et al. (2020) developed a microscale CCHP system with a hot 

spring as the main heat source. The net output energy reached 32.62 kWh at an average efficiency 

of 11.6%. Karim et al. (2021) proposed a CCHP system driven by evacuated tube solar collectors. 

The optimization results revealed a maximum exergy efficiency of 10.06%, and the minimum total 

cost rate reached 0.4835USD/h. Anvari et al. (2021) established a multigeneration system to 

produce power, heating/cooling, and desalinated water based on a gas turbine cycle as the prime 

mover. The results indicated that the cycle power, heating, cooling, and desalinated water 
production could reach 30.5 MW, 40.8 MW, 1 MW, and 0.168 kg/s, respectively. Xu et al. (2021) 

proposed a CCHP design based on acoustic impedance matching between thermoacoustic and 

alternator units. The system achieved an overall exergy efficiency of 24.1%, allowing 78.4 MWh. 

Nami and Moghaddam (2020) studied a CCHP system considering waste heat recovery at a cement 

plant. The results revealed exergy efficiency, energy utilization factor, and sustainability index 
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values of 63.6%, 98.07, and 2.747, respectively. Jia et al. (2021) and Ai et al. (2022) conducted a 

CCHP thermodynamic analysis. The results demonstrated the potential for high efficiency and 

energy conservation. The CCHP system can be designed and operated to achieve energy savings 

and consumption reduction. 
 

The literature indicates that many studies have reported waste-to-energy technology. It should be 

noted that the method to enhance CCHP systems with infectious waste incinerators did not appear 

in recent literature. This novel CCHP system represents an interesting approach to infectious waste 

management that should be analyzed in terms of energy, economics, and environment, 

corresponding to the following aims of this study: 

- To perform model simulations for systematic optimization purposes. 

- To analyze the CCHP thermal performance based on energy, economics, and environment. 

 

2. System description 

The concept of the designed CCHP system designed in this study is illustrated in Fig. 1. The system 

consists of three subsystems: the first system is an incinerator involving an organic Rankine cycle 

(ORC). The second system is an absorption system for combined cooling. The third system is a 

centralized drying room for combined heating. 

 

The required heat energy of the system is supplied by a heat source comprising the combustion 

process of infectious waste in the form of refuse-derived fuel type 3 (RDF-3). The output of the 

incinerator consists of exhaust gas, ash, and combustion heat. Exhaust gas is sent to the treatment 

loop via a hot air blower and double absorber to eliminate small particulates, after which moist gas 

is reheated and evaporated before reducing the dry gas temperature with a cooling set and vacuum 

filter in the final treatment step (points 1e–6e). Ash is a byproduct of the combustion process and is 
ejected below the combustion chamber. The final output, i.e., combustion heat, is sent to the ORC 

system via the hot fluid loop (points 1h–5h). Then, combustion heat is transferred through the ORC 

loop (points 1–5). A dry refrigerant type constitutes the working fluid in the isentropic process of 

the refrigerant loop (points 1–4). The liquid-phase refrigerant is boiled in the boiler to generate 

superheated vapor, which flows into the expander to drive a generator. A lubricant oil loop is used 

to reduce the friction loss in the expander (points 1O–2O). Then, the vapor-phase refrigerant is 

condensed to produce subcooled liquid. 

 

The absorption system is used to produce cooled water as the ORC working fluid instead of the 

ORC condenser and to generate working fluid instead of the evaporator and absorption condenser. 
Hot water originating from the ORC system (point 6h) is sent to the absorption system of the 

generator unit, which contains a working pair of solutions. Subsequently, absorbate (water) is 

extracted from the dilute solutions and heated in the form of superheated vapor, and the solution is 

concentrated enough to function as a strong solution (points 5a–10a). Heat is extracted from vapor 

in the condenser to yield the liquid phase (point 1a). Liquid refrigerant is throttled through the 

thermostatic expansion valve (TXV) and evaporator to produce cooled water (points 2a–3a). 

Liquid-phase water is converted into the vapor phase under negative-pressure conditions at the 

cooling process (point 4a). Then, the obtained vapor is absorbed by a concentrated solution to form 

a dilute solution in the absorber. 

 

The centralization drying room is used to extract moisture from RDF-3 after the steam sterilization 
process. Hot water originating from the absorption system (point 7h) is sent to the drying coil to 

transfer heat into moist air. Thereafter, hot water passes through the hot fluid tank (point 8h) to 

again obtain heat energy from the combustion process. 
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Fig. 1 A schematic diagram of the CCHP system  

 

3. Methodology 

The steps to determine the suitable CCHP system for this study are as follows:  

 

Thermal performance of the CCHP system 

The CCHP system is analyzed by using the REFPROP program (NIST, 2018) for retrieval of the 

working fluid properties. The thermal performance simulation steps are shown in Fig.2  

 

The operating conditions of the incinerator unit 

• The lower heating value of RDF-3 (LHVRDF-3) is 26.92 MJ/kg (Yatsuntea and Chaiyat, 

2020), 

• The efficiency of the incinerator ( IC ) is 31.66% (Yatsuntea and Chaiyat, 2020), 

• The effectiveness of the incinerator ( IC ) is 80% (Sengnavong et al., 2018). 

 
The operating conditions of the ORC unit 

• The working fluid of the ORC system is R-245fa, 

• The temperature of the hot water inlet boiler (T5h) is 105 °C (Sengnavong et al., 2018) 

• The difference in temperature between the hot water inlet and outlet boiler ( HW BT − ) is 

15 °C (Chaiyat and Kiatsiriroat, 2015), 

• The difference in temperature between the cooling water inlet and outlet condenser 

( CWT ) is 5 °C (Chaiyat and Kiatsiriroat, 2015), 
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• The difference in temperature between the hot water inlet and refrigerant of boiler 

( HW refT − ) is 3 °C (Yatsunthea et al., 2019), 

• The difference in temperature between cooling water inlet and refrigerant of condenser 

( CW refT − ) is 2 °C (Yatsunthea et al., 2019), 

• The superheating (SH) is 10 °C, and the subcooling (SC) is 5 °C (Yatsunthea et al., 

2019), 

• The efficiency of generator ( G ) is 80% (Yatsunthea et al., 2019), 

• The isentropic efficiency of pump ( S,P ) is 80% (Sengnavong et al., 2018), 

• The isentropic efficiency of expander ( S,Exp ) is 80% (Sengnavong et al., 2018), 

• The effectiveness of boiler ( B ) is 80% (Sengnavong et al., 2018). 

 
The operating conditions of the absorption unit 

• The working fluid is a water-lithium bromide solution (H2O-LiBr) as referred to the 

ASHRAE (ASHRAE, 2009), 

• The difference in temperature between hot water inlet and outlet of generator ( HW GT − ) is 

5 °C (Inthavideth and Chaiyat, 2016), 

• The difference temperature in the working flow of the generator, condenser, evaporator, 

and absorber ( SolT ) is 3 °C (Inthavideth and Chaiyat, 2016), 

• The isentropic efficiency of solution pump ( SP ) is 85% (Inthavideth, 2017), 

• The effectiveness of heat exchanger ( HX ) is 85% (Inthavideth, 2017), 

• The maximum solution concentration (Xmax) is 60%LiBr (Inthavideth, 2017), 

• The minimum solution concentration (Xmin) is 55%LiBr (Inthavideth, 2017). 

 

The operating conditions of the drying room unit 

• The dimensions of the centralized drying room are 3.6 m (width) x 6.0 m (length) x 3.0 m 

(height) (Chaiyat et al., 2020), 

• The difference in temperature between the hot water inlet and outlet heat exchanger 

( HW HXT − ) is 9 °C (Chao ngew, 2019), 

• The efficiency of the heat exchanger ( HX ) is 85% (Chao ngew, 2019). 

 

3.1 The economics assessment 

This study is analyzed by using the levelized energy costing (LEnC) for normalizing the output in 

terms of power, cooling, and heating of the CCHP system. The function parameters consist of 

investment cost (Inv), operating and maintenance costs (OM), discount rate (r), operating time (tOT), 

real interest rate (iReal), and inflation rate (iInflation). The LEnC value can be estimated by: 

n
t 1 t

CCHP
CCHP,net E DR OTn

t 1 t

OM
Inv

(1 r)
LEnC

(W Q Q )t

(1 r)

=

=

+
+

=
+ +


+

                 (1) 

Real

Inflation

1 i
r 1

1 i

 +
= − 

+ 
                    (2) 
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3.2 The environmental assessment 

This study evaluated environmental impacts of the operation phases of the CCHP system with a life 

span of 20 years and a functional unit of 1 kWh are considered for gate-to-gate boundary condition. 

In accordance with ISO standard series 14040 (principles and framework). The life cycle 
assessment (LCA) framework of the CCHP unit is depicted in Fig. 3.  

 
Start
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Fig. 2 Flow chart for the simulation of energy of the CCHP system 



8th International Conference on Sustainable Energy and Environment (SEE 2022): 

The Road to Net-Zero: Energy Transition Challenges and Solutions  

7-9 November 2022 

 6 

Operation phase

Incinerator unit

Hot fluid pump (WHF)

Hot water pump (WHP)

Hot air blower (WHB)

Absorber pump (WAP)

ORC unit

Refrigerant pump (WP)

Oil pump (WOP)

Absorption unit

Solution pump (WSP)

Cooling fan (WCF)

Cooling pump (WCP)

Drying room

Motor and blower (WMB)

Infectious medical waste 

in form RDF-3

Electricity

Electricity

Electricity

Electricity

Heating

Exhaust

Electricity

Emission

Cooling

Emission

Heating

Emission

Transport Energy and power Emission
 

Fig. 3 System boundary diagram for the environment assessment 

 
4. Results and discussion 

4.1. The thermal performance results 

From the mathematical simulation can be present the results are as follow: 

 

Incinerator 

The average values of infectious medical waste on 1-4 December 2021 at Nakornping hospital is 

430 kg/day, as shown in Fig. 4. In the incinerator, the WtE is used RDF-3 from Nakornping hospital 

for combustion at an operating time of 8 h/day. The RDF-3 at a mass flow rate ( RDFm ) of 53.69 

kg/h generates a combustion heating capacity (QRDF) of 401.91 kW and the hot fluid with heating 
capacity (QHF) of 148.22 kW. Power consumption from absorber pump (WAB) of 0.25 kWe, hot air 

blower (WHB) of 1.5 kWe, and hot fluid pump (WHF) of 2.2 kWe are supplied to drive the 

incinerator system.  

 

Fig. 5, presents the energy efficiency of the incinerator and heat capacity based on the temperature 

profile. According to the simulated results, it can be observed that the energy efficiency and heat 

capacity of hot fluid have curves that reveal the same trend when the increase in temperature 

difference. 
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Fig. 4 Infectious medical waste at Nakornping hospital 
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Fig. 5 Energy efficiency and heat capacity of the incinerator 
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ORC 

The hot water entering the boiler (T5h) of 105 °C is used to boil working fluid at the superheated 

vapor temperature (T3) of 96.20 °C, high pressure (PH) of 936.89 kPa, and transfer heat into the 

boiler at heat capacity (QB) of 147.38 kW. Which can produce electric power from the expander 
(WExp,e) of 13.57 kWe. Then, the superheated vapor temperature at low-side pressure (PL) of 137.75 

kPa and temperature (T5) of 51.32 °C is sent into the condenser. Power consumption from 

refrigerant pump (WP) of 0.42 kW and oil pump (WOP) of 0.23 kW. A net electric power (WORC,net) 

of 12.93 kWe. The energy efficiency (ηORC) of 8.77% 

 

Fig. 6, presents the energy power output and heat capacity of the ORC system based on the 

temperature profile. It can be observed that the energy power and heat capacity have curves that 

reveal the same trend when the increase in temperature difference. 

 

0

100

200

300

400

500

600

0

5

10

15

20

25

30

35

75 76 77 78 79 80 81 82 83 84 85
H

ea
t 

ca
p
ac

it
y
 (

k
W

)

E
n

er
g
y
 p

o
w

er
 (

k
W

)

THW,i - TCW,i ( C)

QC

WExp,e

WORC,net

QB

 
Fig. 6 Energy power and heat capacity of the ORC 

 

Absorption chiller 

The hot water entering the generator (T6h) of 90 °C. the temperature of absorber (TA), condenser2 

(TC2), evaporator (TE), and generator (TG) are 39.7 °C, 38 °C, 27 °C and 87 °C, respectively. The 

heat capacity of heat exchanger (QHX), condenser2 (QC2), generator (QG), and absorber (QA) are 

5.38 kW, 15.71 kW, 17.55 kW, and 17.88 kW, respectively. The COPAB of 0.85 under the operating 

condition of the cooling capacity of the evaporator (QE) 10 kW. The calculation as shown in Fig. 7.  

 

Centralized drying room 

The operating condition of the centralized drying room based on a sizing room at 3.6 m × 6.0 m × 

3.0 m. which energy efficiency (ηDR) of 56.16%, the effectiveness of heat exchanger ( HX ) 85%, 

different temperature hot water at heat exchanger (ΔTHX) of 9 °C, and power consumption from 

motor and blower (WMB) of 0.84 kW. The heat capacity of centralized drying room (QDR) of 22.14 

kW.  

 

 



8th International Conference on Sustainable Energy and Environment (SEE 2022): 

The Road to Net-Zero: Energy Transition Challenges and Solutions  

7-9 November 2022 

 9 

15

16

17

18

19

20

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11

H
ea

t 
ca

p
ac

it
y
 (

k
W

)

C
O

P A
B

THW,i - TCW,i ( C)

QC2

QG

QA

COPAB

 
Fig. 7 Heat capacity of the absorption system 

 

The CCHP system 

The CCHP system is produced electricity power, cooling, and heating production. A total energy 

output (WCCHP,net) of 45.06 kW and total energy input (WPower,i) of 9.54 kW with energy efficiency 
(ηCCHP) of 10.95%. The energy efficiency from this study is nearly the CCHP hot spring system at 

11.6% (Chaiyat et al., 2020), and the CCHP evacuated tube solar collectors at 10.06% (Karim et al., 

2021). But a comparison of hot water entering system found in this study uses low-temperature heat 

of 105 °C. While The CCHP by hot spring uses temperature of 113 °C, and the CCHP by solar 

energy uses temperature of 125 °C, as shown in Fig.8. 
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Fig. 8 The comparison with other study 
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Fig. 9, presents the energy efficiency and energy power of the CCHP system based on the 

temperature profile. It can be observed that the energy efficiency and energy power have curves that 

reveal the same trend when the increase in temperature difference. 
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Fig. 9 Energy efficiency and energy power of the CCHP system 

 

4.2. The economic results 

The economic result focuses on the LEnC for normalizing the output in terms of power, cooling and 

heating of the CCHP system. A lifespan (n) of 20 y and operating time of 8 h/d and 350 d/y. In the 

results the LEnC is 0.158 USD/kWh, as specified in Table 1. 

 
Table 1 The economic results. 

Properties Value References 

Capital cost of incinerator (ZIC, USD) 14,787 Pokson and Chaiyat, (2022) 

Capital cost of the hot fluid tank (ZTank, USD) 14,787 Pokson and Chaiyat, (2022) 

Capital cost of the ORC (ZORC, USD) 73,934 Pokson and Chaiyat, (2022) 

Capital cost of absorption (ZAB, USD) 7,393 Pokson and Chaiyat, (2022) 

Capital cost of drying room (ZDR, USD) 5,915 Pokson and Chaiyat, (2022) 

Capital cost of piping and insulation (ZPI, USD) 5,915 Pokson and Chaiyat, (2022) 

Total investment cost (Inv, USD) 122,731 Pokson and Chaiyat, (2022) 

Maintenance cost (OMOP, USD/y)1 6,553 Calculation 

Operating and maintenance costs (OM, USD/y)2 9,553 Calculation 

Real interest rate (iReal, %) 4.70 CEIC, (2022) 

Inflation rate (iInflation, %) -0.85 Word data, (2022) 

Discount rate (r, %) 5.6% Calculation 

Energy potential (WCCHPtOT) 126,179 Calculation 

Levelized energy costing (LEnC, USD/kWh) 0.158 Calculation 

Note:  1The minimum labor cost in Thailand (OMMan) 9.76 USD/person·day 

 2Maintenance cost at 5% of investment cost 
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4.3. The environmental result 

The environmental result focuses on the carbon dioxide emissions from operation phase with 

lifespan of 20 y and functional unit (FU) of 1 kWh. In the results, the carbon dioxide emission is 

0.2567 kg CO2-eq/kWh, as specified in Table 2. 
 

Table 2 The environmental result 

Properties Value References 

Total infectious medical waste (MRDF, kg) 3,006,500 Calculation 

Net power output (WCCHP, kWh) 2,523,589 Calculation 

Net power input (WPower,i, kWh) 596,624 Calculation 

Emission factor of exhaust gas from electricity 

generation by medical waste  

(EFRDF, kg CO2-eq/kgRDF) 

0.0967 Sonesack, (2018) 

Emission factor for electricity consumption 

(EFElectricity., kg CO2-eq/kWh) 

0.5986 TGO, (2022) 

Total CO2-eq from CCHP (TotalCO2-eq, kg CO2-eq) 647,868 Calculation 

The CO2-eq per functional unit  
(CFPCCHP, kg CO2-eq/kWh) 

0.2567 Calculation 

 

5. Conclusion 

From the study results, it can be concluded as follow:  
- The energy efficiency of the CCHP system was strongly influenced by the process of the 

temperature profile. 

- The infectious medical waste of 53.69 kg/h used to be the heat source in combustion 

process for the incinerator of 430 kg/day.  

- Net electric power from the ORC system of 12.93 kWe with ORC efficiency of 8.77% 

- The cooling capacity of the evaporator is 10 kW with the COPAB from absorption system 

of 0.85. 

- The heating capacity of centralized drying room of 22.14 kW with energy efficiency of 

56.16% 

- The CCHP system can produce electrical power, cooling, and heating production in terms 

of energy at 45.06 kW with energy efficiency of 10.95%. 
- Total investment cost of 122,731 USD and operating and maintenance costs of 9,553 

USD/y directly effects to the levelized energy cost of 0.158 USD/kWh. 

- The carbon dioxide emissions of 0.2567 kg CO2-eq/kWh. 
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7. Abbreviations and symbols 

Nomenclature 

COP  coefficient of performance, (-) 

CFP  carbon footprint emissions (kg CO2-eq) 

EF  greenhouse gas emissions factor, (kg CO2-eq / unit) 

i   interest rate, (%) 

Inv   investment cost, (USD) 

LEnC   levelized energy cost, (USD/kWh) 
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n   life span, (y) 

OM   operating and maintenance costs, (USD/y) 

Q   heat transfer rate, (kW) 

r   discount rate, (%) 
t   time, (h) 

T   temperature, (◦C) 

Z   capital cost, (USD) 

 

Abbreviation 

AB   absorption system 

AD   adsorption system 

CCHP  combined cooling, heating, and power 

DR   drying room 

HF  hot fluid 
IC   incinerator 

LiBr   lithium bromide 

ORC   organic Rankine cycle 

PRV   pressure reducing valve 

RDF   refuse derived fuel 

TXV   thermostatic expansion valve 

 

Subscript 

A   absorber 

AP   absorber pump 

B   boiler 
BW   blower 

C   condenser 

CW   cooling water 

e   electricity 

E   evaporator 

EH   exhaust gas 

Exp   expander 

FC   fan coil 

G   generator 

H   high 
HB   hot air blower 

HF   hot fluid 

HW   hot water 

I   isentropic 

L   low 

OP   oil pump 

OT   operating time 

P   refrigerant pump 

PI   piping and insulation 

SP   solution pump 
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