

รลข.01

หนังสือรับรองการแจ้งข้อมูล **ลิขสิทธิ์** ออกให้เพื่อแสดงว่า มหาวิทยาลัยแม่โจ้

ได้แจ้งข้อมูลลิขสิทธิ์ ประเภทงาน วรรณกรรม

ลักษณะงาน โปรแกรมคอมพิวเตอร์

ชื่อผลงาน โปรแกรมแบบจำลองทางคณิตศาสตร์ระบบผลิตน้ำร้อนพลังงาน

ไว้ต่อกรมทรัพย์สินทางปัญญา

ทะเบียนข้อมูลเลขที่ ว1. 6798

ตามคำขอแจ้งข้อมูลลิขสิทธิ์ เลขที่ 358958

แสงอาทิตย์ (ลำดับที่ 2)

เมื่อวันที่ 18 เดือน กันยายน พ.ศ. 2560

ให้ไว้ ณ วันที่ 21 เดือน กันยายน พ.ศ. 2560

ลงชื่อ..... นางสาวอำพันธ์ เดชสกุลชัย

น เงลา เอาพันป เทชแกุเชช นักวิชาการพาณิชย์ชำนาญการ ปฏิบัติราชการแทนผู้อำนวยการสำนักลิขสิทธิ์

<u>หมายเหตุ</u> 1. เอกสารนี้มิได้รับรองความเป็นเจ้าของลิขสิทธิ์ 2. การเปลี่ยนแปลงรายการข้างต้น ให้ดูด้านหลัง

โปรแกรมแบบจำลอง ทางคณิตศาสตร์ระบบผลิตน้ำร้อน พลังงานแสงอาทิตย์ (ลำดับที่ 2)

จัดทำโดย รองศาสตราจารย์ ดร.นัฐพร ไชยญาติ

วิทยาลัยพลังงานทดแทน มหาวิทยาลัยแม่โจ้

มิถุนายน 2559

คำนำ

บทที่ 1	โปรแกรมแบบจำลองทางคณิตศาสตร์ระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ (ลำดับที่ 2)1
บทที่ 2	การพัฒนาโปรแกรมทางคอมพิวเตอร์9
2.1	Worksheet
2.1.1	Design Thermal (hour)9
2.1.2	Average Temp74
2.1.3	Average IT
2.1.4	Data
2.2	Modules
2.2.1	Module1
2.2.2	Module2
2.2.3	Module3
2.2.4	Module4

สารบัญรูป

รูปที่ 1.1 โปรแกรมแบบจำลองทางคณิตศาสตร์ระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ (ลำคับที่ 2)
รูปที่ 1.2 การเลือกเดือนและตำแหน่งที่ตั้งของระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์
รูปที่ 1.3 การเลือกลักษณะพื้นสะท้อนของรังสีอาทิตย์ที่มาจากสิ่งแวคล้อม และการคำนวณค่ารังสีอาทิตย์
รายชั่วโมงของเดือนและตำแหน่งที่ตั้งระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์
รูปที่ 1.4 การเลือกขนาดถังเก็บน้ำร้อน ประเภทของตัวรับรังสีอาทิตย์และลักษณะการต่อร่วม
รูปที่ 1.5 การเลือกขนาดถังเก็บน้ำร้อน ประเภทของตัวรับรังสีอาทิตย์และลักษณะการต่อร่วม
รูปที่ 1.6 ผลการคำนวณอุณหภูมิน้ำร้อนในถังเก็บน้ำร้อนโดยก่ารังสีอาทิตย์ทางทฤษฎี
รูปที่ 1.7 ผลการคำนวณอุณหภูมิน้ำร้อนในถังเก็บน้ำร้อนโดยก่ารังสีอาทิตย์ที่ได้จากการตรวจวัด7
รูปที่ 1.8 ผลการคำนวณอุณหภูมิน้ำแบบแบ่งชั้นของอุณหภูมิน้ำในถังเก็บน้ำร้อน
รูปที่ 1.9 ผลการคำนวณอุณหภูมิน้ำแบบแบ่งชั้นของอุณหภูมิน้ำในถังเก็บน้ำร้อน ณ เวลาต่าง ๆ
รูปที่ 2.1 โปรแกรมแบบจำลองทางคณิตศาสตร์ระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ (ลำคับที่ 2)10

บทที่ 1 โปรแกรมแบบจำลองทางคณิตศาสตร์ระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ (ลำดับที่ 2)

โปรแกรมแบบจำลองทางคณิตศาสตร์ระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ (ลำคับที่ 2) พัฒนาโดย โปรแกรม Microsoft excel ร่วมกับโปรแกรมคอมพิวเตอร์ Visual Basic Application (VBA) เพื่อใช้ในการ ออกแบบระบบผลิตน้ำร้อนที่ใช้แหล่งความร้อนจากพลังงานแสงอาทิตย์ (Solar Energy) และมีการแบ่งชั้น ของอุณหภูมิน้ำในถังเก็บน้ำร้อน (Stratified tank) ซึ่งลักษณะของโปรแกรมเมื่อเปิดใช้งานจะมีลักษณะคัง แสดงในรูปที่ 1.1

รูปที่ 1.1 โปรแกรมแบบจำลองทางคณิตศาสตร์ระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ (ลำคับที่ 2)

โปรแกรมแบบจำลองทางคณิตศาสตร์ระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ (ลำคับที่ 2) มีขั้นตอน การใช้งานดังต่อไปนี้

- 1.
 กดปุ่ม
 Benzaky 2016 : Solar Water Heating System (Version 2)
 (หมายเลข 1) เพื่อเริ่มต้นการใช้งาน

 โปรแกรม และทำการดึงก่าพื้นฐานต่าง ๆ มาไว้สำหรับรองรับการกำนวณ ดังแสดงในรูปที่ 1.2
- 2. ทำการเลือกเดือนในการคำนวณ (หมายเลข 2)
- ในกรณีที่ต้องการเปลี่ยนแปลงค่ารังสีรวมรายวันในแนวระดับ ให้ทำการแก้ไขค่าในช่อง Daily global radiation on a horizontal surface (H) (หมายเลข 3)
- 4. ทำการเลือกตำแหน่งที่ตั้งในการกำนวณ (หมายเลข 4)
- ในกรณีที่ต้องการเปลี่ยนแปลงค่าตำแหน่งที่ตั้งในการคำนวณ ให้ทำการแก้ไขค่าในช่องต่าง ๆ ดังต่อไปนี้ (หมายเลข 5)
 - Latitude of solar collector location (ϕ)
 - Longitude of solar collector location (L_{loc})
 - Local constant coefficients (a1, a2, b1 และ b2)
 - Attitude (β)
 - Azimuth (γ)

Developed her Associate Devloyee Devloyee Obstant						
Developed by: Associate Professor Dr.Nattaporn Chaiyat	1	Benzaky 2016 : Solar Water H	(Version 2)			
Initial condition						
Start water temperature (T _{HW,Tank})				30.00	°C	
Year day (for year have 365 day, n) and solar radiation	2	april 🗾				
				105		
Daily global radiation on a horizontal surface (H)			3	22.36	MJ/m ² ·day	
Location	4	Chiangmai 🚽				
Latitude of solar collector location (ϕ)			5	18.7800	°N	
Longitude of solar collector location (L_{loc})				98.9800	0	
Local constant coefficients		a ₁		0.5140		
		a ₂		0.2280		
		b ₁		0.5120		
		b ₂		0.0330		
Attitude (β)				18.7800	0	
Azimuth (γ)				0.0000	0	
Reflectance of the foreground (ρ)		Concreat 0.8	•	0.8000		

รูปที่ 1.2 การเลือกเดือนและตำแหน่งที่ตั้งของระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์

- 6. ทำการเลือกลักษณะพื้นสะท้อนของรังสีอาทิตย์ที่มาจากสิ่งแวคล้อม (คอนกรีต ดินหรือพื้น หญ้า) ในการคำนวณ (หมายเลข 6) ดังแสดงในรูปที่ 1.3
- ทำการคำนวณค่ารังสีอาทิตย์รายชั่วโมงของเดือน และตำแหน่งที่ตั้งระบบผลิตน้ำร้อนพลังงาน แสงอาทิตย์ (หมายเลข 7) โดยค่ารังสีอาทิตย์ที่ได้จากการคำนวณจะถูกแสดงผลในรูปแบบ ตัวเลขใน Worksheet.Data เพื่อนำไปใช้งานต่อไป

รูปที่ 1.3 การเลือกลักษณะพื้นสะท้อนของรังสีอาทิตย์ที่มาจากสิ่งแวคล้อม และการคำนวณก่ารังสีอาทิตย์ รายชั่วโมงของเคือนและตำแหน่งที่ตั้งระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์

- 8. ทำการเลือกปริมาตรของถังเก็บน้ำร้อนในการคำนวณ (หมายเลข 8) ดังแสดงในรูปที่ 1.4
- ทำการเลือกประเภทตัวเก็บรังสีแสงอาทิตย์ (หมายเลข 9) ในกรณีที่ต้องการเปลี่ยนแปลงค่า คุณลักษณะของตัวเก็บรังสีอาทิตย์และลักษณะการใช้งาน ให้ทำการแก้ไขค่าในช่องต่าง ๆ ดังต่อไปนี้

- Heat remove factor $(F_R(\tau \alpha))$
- Heat loss factor $(F_R U_L)$
- Area of solar collector (A_{sc})
- Mass flow rate of hot water circulate in each solar collector ($\dot{m}_{\text{SC,Unit}}$)
- ทำการป้อนค่าสัมประสิทธิ์การถ่ายเทความร้อนรวมของถังเก็บน้ำร้อน (หมายเลข 10) ในกรณีที่
 ไม่ทำการแก้ไขระบบจะป้อนค่า 3 W/K
- ทำการป้อนจำนวนแผงรับรังสีอาทิตย์ทั้งหมด (หมายเลข 11) ในกรณีที่ไม่ทำการแก้ไขระบบจะ ป้อนค่า 1 Unit
- 12. ทำการป้อนจำนวนแผงรับรังสีอาทิตย์ที่ต้องการต่ออนุกรม (หมายเลข 12) ในกรณีที่ไม่ทำการ แก้ไขระบบจะป้อนก่า 1 Unit
- 13. ทำการกำนวณจำนวนแถวของแผงรับรังสีอาทิตย์ที่ต่อขนานทั้งหมด (หมายเลข 13)
- 14. ทำการคำนวณอัตราการไหลของน้ำที่จะนำออกไปใช้งานที่เหมาะสม (หมายเลข 14)

Capacity of storage water tank (V _{ST})			8	1,000.00	L
Type of solar collector	9	Evacuated tube	-		
Heat remove factor $(F_R(\tau \alpha))$				0.8100	
Heat loss factor (F _R U _L)				2.5500	W/m²·K
Area of solar collector (A _{SC})				2.4000	m ²
Mass flow rate of hot water circulate in each solar collector ($\dot{m}_{\text{SC,Unit}}$)				0.0430	kg/s
Heat transfer of storage tank (UA _{ST})			10	3.00	W/K
Number of solar collector (N _{SC})			11	10.00	Unit
Number of each solar collector row (N _{SC,Series})			12	1.00	Unit
Number of each solar collector collumn (N _{SC,Pararell})	13	Calculate numbe	er of column	10.00	
Suitable mass flow rate of supplied hot water (m _{Sup})	14	Optimal mass	flow rate	0.4300	kg/s

รูปที่ 1.4 การเลือกขนาดถังเก็บน้ำร้อน ประเภทของตัวรับรังสีอาทิตย์และลักษณะการต่อร่วม

- ทำการป้อนอุณหภูมิน้ำสูงสุดในการทำงานของขดลวดความร้อนเสริม (Auxiliary heater) สำหรับการเพิ่มอุณหภูมิน้ำร้อนร่วมกับระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ (หมายเลข 15) ในกรณีที่ไม่ทำการแก้ไขระบบจะป้อนค่า 60 °C ดังแสดงในรูปที่ 1.5
- ทำการป้อนอัตราการให้ความร้อนของขดลวดความร้อนเสริม สำหรับการเพิ่มอุณหภูมิน้ำร้อน ร่วมกับระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ (หมายเลข 16) ในกรณีที่ไม่ทำการแก้ไขระบบจะ ป้อนค่า 0 kW
- ทำการป้อนอัตราความร้อนของการใช้งานและอุณหภูมิน้ำร้อนขั้นต่ำที่ต้องการใช้น้ำร้อน (หมายเลข 17) ในกรณีที่ไม่ทำการแก้ไขระบบจะป้อนค่า 1 kW และ 60 °C ตามลำคับ
- ทำการป้อนผลต่างอุณหภูมิน้ำร้อนใช้งานที่กลับเข้าสู่ระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์
 เมื่อเทียบกับอุณหภูมน้ำร้อนใช้งานออกจากระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ สำหรับ

ระบบแบบปิด (Close loop system) (หมายเลข 18) ในกรณีที่ไม่ทำการแก้ไขระบบจะป้อนค่า 5 °C

- 19. ทำการป้อนผลต่างอุณหภูมิน้ำร้อนออกจากแผงรับรังสีอาทิตย์กับน้ำร้อนในถังเก็บน้ำร้อน หาก อุณหภูมิน้ำร้อนที่ออกจากแผงรับรังสีอาทิตย์กับอุณหภูมิน้ำร้อนในถังเก็บน้ำร้อน มีค่าต่ำกว่าค่า นี้จะทำให้ปั๊มน้ำร้อนหยุดทำงาน (หมายเลข 19) ในกรณีที่ไม่ทำการแก้ไขระบบจะป้อนค่า 1 °C
- ทำการป้อนอุณหภูมิน้ำเติมกลับเข้าสู่ระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ สำหรับระบบแบบ
 เปิด (Open loop system) (หมายเลข 20) ในกรณีที่ไม่ทำการแก้ไขระบบจะป้อนค่า 30 °C
- 21. ใช้สำหรับการลบข้อมูลในแผนภาพแสดงผลก่อนการคำนวณ (หมายเลข 21) ซึ่งโดยปกติเมื่อ ระบบทำการคำนวณไปก่อนหน้านี้ จะทำให้มีข้อมูลปรากฏอยู่ในแผนภาพอยู่ก่อน ทำให้ บางกรั้งผลการคำนวณใหม่บางส่วน เกิดการเชื่อมต่อกับข้อมูลเก่า ดังนั้นควรทำการลบข้อมูล ก่อนการคำนวณใหม่ทุกครั้ง
- ทำการเลือกช่วงเวลาเริ่มต้นและหยุดการใช้งานของระบบ ร่วมทั้งช่วงเวลาการคำนวณและ ระยะเวลาการคำนวณทั้งหมด (หมายเลข 22)

Temperature setting of auxiliary heat (T _{Set})					15	60.00	°C
Heat rate of auxiliary heat (Q _{Aux})					16	0.00	kW
Using of useful heat (Q_{Sup} and T_{Sup})			17	2.00	kW	90.00	°C
Different temperature of supplied hot water					18	5.00	°C
Different water temperature to cut pump					19	1.00	°C
Filling water temperature in storage tank	21	Clear gh	arp		20	30.00	°C
Time	22	6:00 AM	6:00 PM	✓ 1 hr	▼ 3 days	•	

รูปที่ 1.5 การเลือกขนาคถังเก็บน้ำร้อน ประเภทของตัวรับรังสีอาทิตย์และลักษณะการต่อร่วม

- 23. ทำการปุ่ม Calculate hot water temperature เพื่อคำนวณอุณหภูมิน้ำร้อนในถังเก็บน้ำร้อนจาก ข้อมูลต่าง ๆ ข้างต้น (หมายเลข 23) ดังแสดงในรูปที่ 1.6
- 24. ในกรณีที่ต้องการนำผลการตรวจวัดค่ารังสีอาทิตย์มาใช้ สำหรับการคำนวณอุณหภูมิน้ำร้อนใน ถังเก็บน้ำร้อน (สามารถทำการป้อนข้อมูลค่ารังสีอาทิตย์ใน Worksheet.Average IT และค่า อุณหภูมิอากาศแวดล้อมใน Worksheet.Average Temp) โดยกดปุ่ม Calculate from measuremented IT ดังแสดงในรูปที่ 1.7

School of Renewable Energy

MAEJO University

รูปที่ 1.6 ผลการคำนวณอุณหภูมิน้ำร้อนในถังเก็บน้ำร้อนโดยค่ารังสีอาทิตย์ทางทฤษฎี

รูปที่ 1.7 ผลการคำนวณอุณหภูมิน้ำร้อนในถังเก็บน้ำร้อนโดยค่ารังสีอาทิตย์ที่ได้จากการตรวจวัด

- 25. โปรแกรมจะทำการกำหนดจำนวนชั้นของอุณหภูมิน้ำในถังเก็บน้ำร้อนไว้ที่ 5 Node ซึ่งไม่ สามารถแก้ไขข้อมูลในช่องคังกล่าวนี้ได้ (หมายเลข 25) คังแสดงในรูปที่ 1.8
- ทำการป้อนเส้นผ่านศูนย์กลางของถังเก็บน้ำร้อน (หมายเลข 26) ในกรณีที่ไม่ทำการแก้ไขระบบ จะป้อนค่า 1 m
- 27. ทำการคำนวณอุณหภูมิน้ำในชั้นต่าง ๆ ของน้ำในถังเก็บน้ำร้อน โดยการกดปุ่ม
 Stratified hot water temperature (หมายเลข 27) ดังแสดงในรูปที่ 1.8 และผลการคำนวณใน รูปแบบตัวเลขและกราฟเส้น จะแสดงในรูปที่ 1.9

Node of stratified tank				25	5	Node
Diameter of stratified tank				26	2.00	m
			27	Stratified hot water t	temperature	
	542.39 -270.18 0.00 0.00 0.00 -270.18 540.59 -270.18 0.00 0.00 0.00 -270.18 542.39 -270.18 0.00 0.00 0.00 -270.18 540.59 -270.18 0.00 0.00 -270.18 540.59		T1=138.23 T2=137.39 T3=136.54 T4=135.68 T5=134.81	37856.89 32.33 281.89 31.51 36221.10		

รูปที่ 1.8 ผลการคำนวณอุณหภูมิน้ำแบบแบ่งชั้นของอุณหภูมิน้ำในถังเก็บน้ำร้อน

รูปที่ 1.9 ผลการคำนวณอุณหภูมิน้ำแบบแบ่งชั้นของอุณหภูมิน้ำในถังเก็บน้ำร้อน ณ เวลาต่าง ๆ

บทที่ 2

การพัฒนาโปรแกรมทางคอมพิวเตอร์

โปรแกรมแบบจำลองทางคณิตศาสตร์ระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ (ลำคับที่ 2) มีการ พัฒนาโปรแกรม Excel (Worksheet) ร่วมกับโปรแกรมทางคอมพิวเตอร์ VBA (Modules) คังต่อไปนี้

2.1 Worksheet

2.1.1 Design Thermal (hour)

XII 🗔	לקייר HOME	* INSERT PAGE LAVOUT FORMULAS DATA REVIEW VIEW DEVELOPER	Solar auxiliarly h	neat11 (Basic) - Exce	el			
Aa	Colors -		Gridlines Headings		R 📮 🖬 2			
Themes	A Fonts *	Margins Orientation Size Print Breaks Background Print Automatic*	✓ View ✓ View Bri Print Print Forw	ng Send Se ard * Backward *	election Align Group Rot	ate		
TÌ	iemes	Page Setup Scale to Fit Ta	Sheet Options 5	A	urrange			
К10	Ŧ	$\times \checkmark f_x$						
A	В	С	D	E	F	G	Н	
1		Developed by: Associate Professor Dr Nattaporn Chaivat		Dama		la atta a C uata a A	(
2				Benzai	ky 2016 : Solar water i	Heating System (V	ersion 2)	
3		Initial condition						
4		Start water temperature (T _{HW,Tank})			april		30.00	°C
5		Year day (for year have 365 day, n) and solar radiation			aprii 🝷			
6							105	
7		Daily global radiation on a horizontal surface (H)			Chianamai		22.36	MJ/m²⋅day
8		Location						
9		Latitude of solar collector location (ϕ)					18.7800	°N
10		Longitude of solar collector location (L _{loc})					98.9800	0
11		Local constant coefficients			a ₁		0.5140	
12					a ₂		0.2280	
13					b ₁		0.5120	
14					b ₂		0.0330	
15		Attitude (β)					18.7800	0
16		Azimuth (γ)			Concreat 0.8		0.0000	0
17		Reflectance of the foreground (p)					0.8000	
18			1000		Calculate solar rac	liation		
19			1000		904 9	× 862		
20			900 -		795			
21			800 - R 700			720		
22			L 700	6	522		\	
23			U 500				528	
24			100 adjat	418				
20							322	
20			300 200	218				35
28			100 - 54					
20								0
30			6:00:00	8:00:00	10:00:00 12:	00:00 14:00:0	16:00:00	18:00:00
31			-		Ті	ime		
32		Capacity of storage water tank (Ver)					1.000.00	L
33	-+				Evacuated tube	-	.,000.00	
34		Heat remove factor ($F_{P}(\tau \alpha)$)					0.8100	
35		Heat loss factor (F _o U ₁)					2,5500	W/m ² ·K
36		Area of solar collector (Asc)					2,4000	m ²
37		Mass flow rate of hot water circulate in each solar collector (m _{SC.Unit})					0.0430	kg/s

School of Renewable Energy

MAEJO University

รูปที่ 2.1 โปรแกรมแบบจำลองทางคณิตศาสตร์ระบบผลิตน้ำร้อนพลังงานแสงอาทิตย์ (ลำคับที่ 2)