

รลข.01

หนังสือรับรองการแจ้งข้อมูล **ลิขสิทธิ์** ออกให้เพื่อแสดงว่า **มหาวิทยาลัยแม่โจ้**

ได้แจ้งข้อมูลลิขสิทธิ์ ประเภทงาน วรรณกรรม

ลักษณะงาน หนังสือ

ชื่อผลงาน ไซโครล็อกเกอร์ (Psychro logger)

ไว้ต่อกรมทรัพย์สินทางปัญญา

ตามคำขอแจ้งข้อมูลลิขสิทธิ์ เลขที่ 363321

ทะเบียนข้อมูลเลขที่ ว. 41181

เมื่อวันที่ 9 เดือน กุมภาพันธ์ พ.ศ. 2561

ให้ไว้ ณ วันที่ 22 เดือน มีนาคม พ.ศ. 2561

นายสุรภูมิ ตีระนันทน์ นักวิชาการพาณิชย์ชำนาญการพิเศษ ปฏิบัติราชการแทนผู้อำนวยการสำนักลิขสิทธิ์

<u>หตุ</u> 1. เอกสารนี้มิได้รับรองความเป็นเจ้าของลิขสิทธิ์
 2. การเปลี่ยนแปลงรายการข้างต้น ให้ดูด้านหลัง

<u>หมายเหตุ</u>

ไซโครล็อกเกอร์ (Psychro Logger)

จัดทำโดย รองศาสตราจารย์ ดร.นัฐพร ไชยญาติ นายปรานต์ เมฆอากาศ นายสุธรรม ชาวงิ้ว นางสาวปาณิศา อ่อนดอกไม้ นางสาวหญิง ชูศรี

สาขาวิศวกรรมพลังงานทดแทน วิทยาลัยพลังงานทดแทน มหาวิทยาลัยแม่โจ้ ธันวาคม พ.ศ. 2560 รายงานเล่มนี้เป็นรายงานเกี่ยวกับการออกแบบระบบตรวจวัดคุณสมบัติของอากาศชื้น ซึ่งจะมีการพัฒนารหัส โปรแกรมภายใต้โปรแกรมทางคอมพิวเตอร์ที่มีชื่อว่า Arduino IDE ควบคู่กับการใช้วัสดุอุปกรณ์ทางอิเล็กทรอนิกส์ ต่าง ๆ ในการเชื่อมต่อเพื่อวัดค่าคุณสมบัติอากาศชื้น ซึ่งเนื้อหาภายในเล่มจะประกอบไปด้วยเนื้อหาในส่วนของ ทฤษฎีเกี่ยวกับอากาศชื้น แบบจำลองทางคณิตศาสตร์ของคุณสมบัติอากาศชื้น ตลอดจนการสร้างหรือการพัฒนา โปรแกรมตรวจวัดคุณสมบัติอากาศชื้นที่ควบคุมไปถึงเนื้อหาและรายละเอียดของการติดตั้งโปรแกรมทาง คอมพิวเตอร์ Arduino IDE การเชื่อมต่ออุปกรณ์ต่าง ๆ เพื่อสร้างกล่องเครื่องมือที่ใช้ในการตรวจวัดค่าคุณสมบัติ ของอากาศชื้นดังกล่าว รวมไปถึงลักษณะและวิธีการใช้งานกล่องเครื่องมือนั้น ๆ ด้วย

คณะผู้จัดทำหวังเป็นอย่างยิ่งว่ารายงานเล่มนี้จะเป็นประโยชน์แก่ผู้ต้องการศึกษาอย่างสูงที่สุด หากมี ข้อผิดพลาดประการใด คณะผู้จัดทำขอน้อมรับทุกคำชี้แนะและขออภัยมา ณ ทีนี้ด้วย

> คณะผู้จัดทำ ธันวาคม พ.ศ. 2560

กิตติกรรมประกาศ

ขอขอบคุณวิทยาลัยพลังงานทดแทน มหาวิทยาลัยแม่โจ้ ภายใต้ "โครงการผลิตและพัฒนาศักยภาพบัณฑิต ทางด้านพลังงานทดแทน ในกลุ่มประเทศอาเซียนสำหรับนักศึกษาระดับบัณฑิตศึกษา" และ "โครงการการผลิต ไฟฟ้าร่วมกับการทำความเย็นและความร้อนแบบขั้นบันไดจากพลังงานความร้อนใต้พิภพในประเทศไทย" ที่มอบ ทุนการสนับสนุนสำหรับการดำเนินงานวิจัยครั้งนี้

> คณะผู้จัดทำ ธันวาคม พ.ศ. 2560

คำนำ 	•••••		ก
กิตติกรร	ามประกา	าศ	ข
สารบัญ	•••••		ค
สารบัญรู	รูป		จ
สารบัญต	ตาราง		ช
อักษรย่อ	ວແລະสัถุ	เล้กษณ์	ซ
การออก	แบบระ	บบตรวจวัดคุณสมบัติอากาศชื้น	1
1.	อากาศ	<i>เ</i> ชื้น	1
	1.1	ความดันบรรยากาศ (Standard atmosphere)	1
	1.2	ความดันไอ (Vapor pressure)	2
	1.3	ความดันไออิ่มตัว (Vapor saturation pressure)	2
	1.4	อุณหภูมิกระเปาะแห้ง (Dry bulb temperature)	2
	1.5	อุณหภูมิจุดน้ำค้าง (Dew point temperature)	3
	1.6	อุณหภูมิกระเปาะเปียก (Wet bulb temperature)	3
	1.7	อัตราส่วนความชื้น (Humidity ratio)	4
	1.8	ปริมาตรจำเพาะของอากาศขึ้น (Specific volume of moist air)	4
	1.9	เอนทัลปีของอากาศชื้น (Enthalpy)	4
2.	ແບບຈໍ	ำลองทางคณิตศาสตร์ของคุณสมบัติอากาศชื้น	5
3.	โปรแก	ารมตรวจวัดคุณสมบัติอากาศชื้น	5
	3.1	การติดตั้งโปรแกรม Arduino	9
	3.2	เริ่มต้นการใช้งานเพื่อการพัฒนารหัสโปรแกรมคุณสมบัติอากาศชื้น	12

3.3	การทดลองการใช้งานอุปกรณ์ร่วมกับไลบรารี	15
3.4	การพัฒนารหัสโปรแกรม Arduino เพื่อการตรวจวัดค่าคุณสมบัติอากาศชื้น	20
3.5	การต่ออุปกรณ์วัดค่าคุณสมบัติอากาศชื้น	25
3.6	วิธีการใช้งานโปรแกรมคุณสมบัติอากาศชื้น	27
เอกสารอ้างอิง		30
ภาคผนวก		31
ภาคผนวก	ารายละเอียดวัสดุอุปกรณ์ที่ใช้ในโปรแกรมคุณสมบัติอากาศชื้น	31

สารบัญรูป

รูปที่	1 ขั้นตอนการคำนวณของแบบจำลองทางคณิตศาสตร์ของโปรแกรมอากาศชื้น	6
รูปที่	2 หน้าเว็บเพจในส่วนของการดาวน์โหลดโปรแกรม	9
รูปที่	3 หน้าเว็บเพจส่วนของการดาวน์โหลด	10
รูปที่	4 หน้าต่างส่วนของการเริ่มติดตั้ง	10
รูปที่	5 หน้าต่างของส่วนตัวเลือกติดตั้งโปรแกรม	11
รูปที่	6 หน้าต่างการเลือกโฟลเดอร์ในการติดตั้ง	11
รูปที่	7 โปรแกรมทำการติดตั้ง	12
รูปที่	8 ข้อความที่แสดงเมื่อทำการติดตั้งโปรแกรมเสร็จ	12
รูปที่	9 เริ่มต้นการใช้งานโปรแกรม Arduino	13
รูปที่	10 หน้าต่างของโปรแกรม Arduino IDE	14
รูปที่	11 เริ่มต้นการติดตั้งไลบรารี	14
รูปที่	12 หน้าต่างของส่วนที่ทำการติดตั้งไลบรารี DHT22	15
รูปที่	13 หน้าต่างของส่วนที่ทำการติดตั้งไลบรารี LiquidCrytal I2C	15
รูปที่	14 เลือกโปรแกรมตัวอย่างของ LCD I ² C	16
รูปที่	15 ชุดคำสั่งโปรแกรมทดลองของ LCD I ² C	17
รูปที่	16 การเลือกรุ่นบอร์ดในการทดลอง	17
รูปที่	17 การเลือกพอร์ทที่เชื่อมต่อกับบอร์ด	18
รูปที่	18 การอัพโหลดโปรแกรมไปยังบอร์ดชุดทดลอง	18
รูปที่	19 ข้องความที่แสดงยังโมดูล LCD	19
รูปที่	20 โปรแกรมทดลองของเซนเซอร์ DHT22	19
รูปที่	21 หน้าต่างแสดงผลของเซนเซอร์ DHT22	20
รูปที่	22 หน้าจอแสดงผลของโปรแกรมคุณสมบัติอากาศชื้น	25
รูปที่	23 แผนภาพการต่อวงจรของวัสดุอุปกรณ์ต่าง ๆ ที่ใช้วัดค่าคุณสมบัติอากาศชื้น	26
รูปที่	24 การต่อวงจรของอุปกรณ์ต่าง ๆ ที่ใช้วัดค่าคุณสมบัติอากาศชื้น	26
รูปที่	25 กล่องโปรแกรมคุณสมบัติอากาศชื้น	27
รูปที่	26 ส่วนหน้าจอแสดงผล (1)	28
รูปที่	27 ส่วนหน้าจอแสดงผล (2)	28
รูปที่	28 ส่วนหน้าจอแสดงผล (3)	28

ร	ปที่	29	ส่วนหน้าจอแสดงผล	(4)	 .29
ขั	0			· · ·	

สารบัญตาราง

ตารางที่ 1 การคุณสมบัติอากาศชื้นจากความดันบ	รรยากาศ อุณหภูมิกระเปาะแห้งและเปียก5
ตารางที่ 2 วัสดุอุปกรณ์ที่ใช้ในการพัฒนาโปรแกรม	มและอุปกรณ์วัดคุณสมบัติอากาศชื้น7

อักษรย่อและสัญลักษณ์

สัญลักษณ์	ความหมาย	หน่วย
h	เอนทัลปี	kJ/kg
Н	ความสูงระดับพื้นดินเทียบกับะดับน้ำทะเล	m
Ρ	ความดัน	bar
R	ค่าคงที่	
RH	ความชื้นสัมพัทธ์	%
Т	อุณหภูมิ	°C
⊤ ′	อุณหภูมิ	К
ตัวกรีก	ความหมาย	
ν	ปริมาตรจำเพาะ	m³/kg
ω	อัตราส่วนความชื้นของอากาศชื้น	kg _W /kg _{da}
ตัวห้อย	ความหมาย	
а	Air	
atm	Standard atmosphere	
da	Dry air	
db	Dry bulb	
dp	Dew point	
Т	Temperature	
W	Water	
wb	Wet bulb	
WS	Saturated vapor	

การออกแบบระบบตรวจวัดคุณสมบัติอากาศชื้น

ในการคำนวณระบบที่มีอากาศขึ้นมาเกี่ยวข้อง โดยนิยมใช้แผนภูมิไซโครเมตริกในการวิเคราะห์ ซึ่งมีข้อจำกัด ในการใช้งาน คือ ต้องทำการหาค่าคุณสมบัติจากแผนภาพใหม่ทุกครั้งเมื่อมีการเปลี่ยนแปลงเงื่อนไข เช่น อุณหภูมิ กระเปาะแห้ง กระเปาะเปียก เป็นต้น รวมทั้งยุ่งยากในการนำไปใช้ในวิเคราะห์ผลข้อมูลที่ได้จากการทดสอบและ เก็บข้อมูล ซึ่งมีจำนวนมากและข้อมูลแตกต่างกันไป ดังนั้นจึงควรทำการพัฒนาแบบจำลองทางคณิตศาสตร์ของ อากาศชื้น เพื่อรองรับการคำนวณและวิเคราะห์ข้อมูล ในบทนี้จึงได้นำเสนอการพัฒนาแบบจำลองทางคณิตศาสตร์ คุณสมบัติอากาศชื้นโดยใช้โปรแกรม Arduino IDE ซึ่งจะมีรายละเอียดดังต่อไปนี้

1. อากาศชื้น

อากาศชื้น (Moist air) หรือบางครั้งเรียกว่า "อากาศเปียก" คือ อากาศที่มีไอน้ำรวมอยู่ด้วย โดยอากาศเปียก ที่พบอยู่โดยทั่วไปนั้นสามารถยกตัวอย่างไปถึงสภาพอากาศก่อนฝนตกที่พบว่ามักจะทำให้รู้สึกอบอ้าวและอึดอัด เพราะว่าน้ำหรือเหงื่อที่ผิวหนังไม่สามารถระเหยออกไปได้ตามปกติ เนื่องมาจากการมีปริมาณไอน้ำในอากาศมาก เกินไป ซึ่งโมเลกุลของน้ำที่ปะปนอยู่ในอากาศแห้งสามารถส่งผลต่อความดันอากาศได้เหมือนกับโมเลกุลของสาร อื่น ๆ ดังนั้นในความเป็นจริงแล้วอากาศจึงไม่ใช่ก๊าซอุดมคติ ทั้งนี้จึงมีความจำเป็นอย่างยิ่งที่จะต้องใช้วิธีการ คำนวณหาค่าความสัมพันธ์ระหว่างอุณหภูมิ ความดัน และปริมาตร ภายใต้สภาวะอื่น ๆ ที่ไม่ใช่เงื่อนไขของก๊าซ อุดมคติ แต่ในกรณีการคำนวณเกี่ยวกับสมบัติทางอากาศที่ความดันไม่เกิน 3 bar สามารถสมมุติให้อากาศเป็นก๊าซ อุดมคติได้ ทั้งนี้จะมีสมการทางคณิตศาสตร์ที่เกี่ยวข้องกับอากาศชื้นดังนี้

1.1 ความดันบรรยากาศ (Standard atmosphere)

ความดันบรรยากาศ หรือความดันอากาศ มีการเปลี่ยนแปลงอยู่ตลอดเวลา และที่ระดับความสูงเหนือ ระดับน้ำทะเลต่าง ๆ จะมีค่าไม่เท่ากัน ทั้งนี้ขึ้นอยู่กับอุณหภูมิของอากาศด้วย ซึ่งความดันบรรยากาศที่ความสูง ระดับน้ำทะเล อุณหภูมิ 14 °C จะมีค่าความดันบรรยากาศ 101.325 kPa โดยเมื่อมีการเพิ่มระดับความสูงเหนือ ระดับน้ำทะเลเพิ่มขึ้น จะพบว่าค่าความดันบรรยากาศนั้นมีค่าลดน้อยลง อีกทั้งเมื่ออุณหภูมิของอากาศมีค่าเพิ่มขึ้น ก็จะทำให้ค่าความดันบรรยากาศมีค่าลดลงเช่นกัน ซึ่งในที่นี้จะทำการคำนวณหาความดันบรรยากาศที่แปรผันตาม ความสูงเหนือระดับน้ำทะเล ดังแสดงในสมการที่ 1 [1]

เมื่อ P_{atm} คือ ความดันบรรยากาศ (kPa)

H คือ ความสูงเหนือระดับน้ำทะเล (m)

1.2 ความดันไอ (Vapor pressure)

ความดันไอ ในที่นี้หมายถึงแรงดันย่อยที่เกิดจากไอน้ำ ทั้งนี้ความดันไอหมายถึงความดันที่มีความสามารถที่ จะทำให้สารเปลี่ยนสถานะกลายเป็นไอ มีความสัมพันธ์กับจุดเดือด กล่าวคือ ณ อุณหภูมิต่างกัน ความดันไอของ ของสารชนิดหนึ่งจะมีค่าแตกต่างกัน นั่นคือที่อุณหภูมิสูงความดันไอของของสารจะมีค่าสูงกว่าที่อุณหภูมิต่ำ เนื่องจากโมเลกุลมีพลังงานจลน์เพิ่มขึ้น โมเลกุลจึงมีโอกาสเป็นไอได้มากขึ้น ซึ่งในการเขียนโปรแกรมการ คำนวณหาค่าความดันไอสามารถหาได้จากความสัมพันธ์ระหว่างความดันไออิ่มตัวและความชื้นสัมพัทธ์ ดังสมการ ที่ 2 [1]

เมื่อ P_w คือ ความดันไอ (kPa) P_{ws} คือ ความดันไออิ่มตัว (kPa) RH คือ ความชื้นสัมพัทธ์ (%)

1.3 ความดันไออิ่มตัว (Vapor saturation pressure)

ความดันไออิ่มตัว ในที่นี้หมายถึงแรงดันของไอน้ำอิ่มตัว ซึ่งสามารถหาได้จากสมการที่ 3 [1]

1.4 อุณหภูมิกระเปาะแห้ง (Dry bulb temperature)

อุณหภูมิกระเปาะแห้ง คือ อุณหภูมิของอากาศหรืออากาศชื้นที่สามารถอ่านได้จากเทอร์โมมิเตอร์โดยตรง ซึ่ง ในขั้นตอนการวัดจะต้องวัดในขณะที่อากาศสามารถถ่ายเทได้อย่างสะดวก จึงจะได้ค่าอุณหภูมิที่ถูกต้อง

1.5 อุณหภูมิจุดน้ำค้าง (Dew point temperature)

อุณหภูมิจุดน้ำค้าง หมายถึง อุณหภูมิที่เมื่ออากาศชื้นถูกทำให้เย็นลงขณะที่ปริมาณไอน้ำยังคงที่ การลด อุณหภูมิถึงจุดหนึ่งจะทำให้ไอน้ำเกิดการอิ่มตัว และกลั่นตัวควบแน่นเป็นหยดน้ำ (Condensate) ที่ความดัน บรรยากาศคงที่ ตัวอย่างอุณหภูมิจุดน้ำค้างที่พบได้ในชีวิตประจำวัน เช่น การตั้งแก้วน้ำเย็นไว้ และมีหยดน้ำมา เกาะที่ผิวแก้วด้านนอก เกิดขึ้นเนื่องจากอุณหภูมิของอากาศบริเวณแก้วน้ำเย็นต่ำกว่าจุดน้ำค้างและกลั่นตัวเกาะอยู่ บนผิวแก้ว ในการคำนวณครั้งนี้จะทำการหาอุณหภูมิจุดน้ำค้างจากความสัมพันธ์ระหว่างความชื้นสัมพัทธ์และ อุณหภูมิกระเปาะแห้ง ดังแสดงในสมการที่ 4 [1]

$$T_{dp} = \frac{243.12 \left[ln \left(\frac{RH}{100} \right) + \frac{17.62 T_{db}}{243.12 + T_{db}} \right]}{17.62 - \left[ln \left(\frac{RH}{100} \right) + \frac{17.62 T_{db}}{243.12 + T_{db}} \right]}$$

สมการที่ 4

เมื่อ T_{dp} คือ อุณหภูมิจุดน้ำค้าง (°C)

RH คือ ความชื้นสัมพัทธ์ (%)

T_{db} คือ อุณหภูมิกระเปาะแห้ง (°C)

1.6 อุณหภูมิกระเปาะเปียก (Wet bulb temperature)

อุณหภูมิกระเปาะเปียกแสดงให้เห็นถึงความสามารถในการระเหยของน้ำที่สภาวะอากาศหนึ่ง ๆ โดยทำการ วัดด้วยการใช้เทอร์โมมิเตอร์ที่คลุมหรือหุ้มด้วยผ้าที่เปียกน้ำ ซึ่งหากความชื้นในอากาศมีน้อยจะทำให้น้ำสามารถ ระเหยได้ง่าย จึงทำให้ผลต่างระหว่างอุณหภูมิกระเปาะแห้งและกระเปาะเปียกมีค่าต่างกันมาก และในทางกลับกัน หากความชื้นในอากาศมีมากจะทำให้น้ำระเหยได้ยาก ทำให้ผลต่างระหว่างอุณหภูมิกระเปาะแห้งและกระเปาะ เปียกมีค่าไม่ต่างกันมากนัก ซึ่งในการคำนวณครั้งนี้จะใช้สมการที่ 5 [1] ในการคำนวณ

เมื่อ T_{wb} คือ อุณหภูมิกระเปาะเปียก (°C)

T_{db} คือ อุณหภูมิกระเปาะแห้ง (°C)

a และ b คือ ค่าที่ได้จากการคำนวณค่าจากความดันบรรยากาศ ซึ่ง a = 0.000066P_{atm} และจากการ คำนวณค่าจากความดันไอและอุณหภูมิจุดน้ำค้าง ซึ่ง b= 409.8P_w /(T_{dp} + 273.15)²

1.7 อัตราส่วนความชื้น (Humidity ratio)

อัตราส่วนความขึ้น บางครั้งเรียกว่า ความขึ้นจำเพาะ หมายถึงมวลของไอน้ำต่อมวลของอากาศแห้ง แต่ทั้งนี้ อัตราส่วนความชื้น สามารถคำนวณได้จากความสัมพันธ์ของสมการของก๊าซสมบูรณ์และกฎของดาลตัน ดังสมการ ที่ 6 [1]

เมื่อ 🛈 คือ อัตราส่วนความชื้น (kg_w/kg_{da}) P_w คือ ความดันไอ (kPa) P_{atm} คือ ความดันบรรยากาศ (kPa)

1.8 ปริมาตรจำเพาะของอากาศชื้น (Specific volume of moist air)

ปริมาตรจำเพาะของอากาศชื้น คือ อัตราส่วนของปริมาตรของไอน้ำต่อมวลของอากาศแห้ง ซึ่งสามารถ คำนวณหาได้จากสมการที่ 7 [1]

$$u_{a} = R_{da} T'_{db} [1 + (1.607858 \Theta)] / P_{atm}$$
สมการที่ 7

- เมื่อ $\, V \,$ คือ ปริมาตรจำเพาะของอากาศชื้น (m 3 /kg $_{
 m da}$)
 - . T_{db} คือ อุณหภูมิกระเปาะแห้ง (K)
 - ω คือ อัตราส่วนความชื้น (kg_W/kg_{da)}
 - R_{da} คือ ค่าคงที่ที่มีค่าเท่ากับ 0.287042 kJ/kg_{da}·K

1.9 เอนทัลปีของอากาศชื้น (Enthalpy)

เอนทัลปีของอากาศชื้น หรือพลังงานความร้อนรวม เป็นค่าที่แสดงถึงปริมาณพลังงานความร้อนที่สะสมอยู่ใน อากาศ อันเป็นผลรวมของเอนทัลปีของอากาศแห้งและไอน้ำที่อยู่ในอากาศ ทั้งนี้ค่าเอนทัลปีของอากาศชื้นสามารถ คำนวณหาได้จากสมการที่ 8 [1]

เมื่อ h_a คือ เอนทัลปีของอากาศชื้น (kJ/kg_{da}) T_{db} คือ อุณหภูมิกระเปาะแห้ง (℃) **ω** คือ อัตราส่วนความชื้น (kg_w/kg_{da})

2. แบบจำลองทางคณิตศาสตร์ของคุณสมบัติอากาศชื้น

ในการคำนวณระบบที่มีอากาศชื้นมาเกี่ยวข้อง โดยนิยมใช้แผนภูมิไซโครเมตริกในการวิเคราะห์ ซึ่งมีข้อจำกัด ในการใช้งาน คือ ต้องทำการหาค่าคุณสมบัติจากแผนภาพใหม่ทุกครั้งเมื่อมีการเปลี่ยนแปลงเงื่อนไข เช่น อุณหภูมิ กระเปาะแห้ง กระเปาะเปียก เป็นต้น รวมทั้งยุ่งยากในการนำไปใช้ในวิเคราะห์ผลข้อมูลที่ได้จากการทดสอบและ เก็บข้อมูล ซึ่งมีจำนวนมากและข้อมูลแตกต่างกันไป ดังนั้นจึงควรทำการพัฒนาแบบจำลองทางคณิตศาสตร์ของ อากาศชื้น เพื่อรองรับการคำนวณและวิเคราะห์ข้อมูล

ในบทนี้นำเสนอการพัฒนาแบบจำลองทางคณิตศาสตร์คุณสมบัติอากาศชื้น โดยใช้โปรแกรม Arduino IDE และมีเงื่อนไขเริ่มต้นการคำนวณ คือ อุณหภูมิกระเปาะแห้ง (T_{db}) ความชื้นสัมพัทธ์ (RH) และความสูงของพื้นที่ เหนือระดับน้ำทะเล (H) ดังแสดงสมการที่ใช้ในการพัฒนาแบบจำลองและรายละเอียดโปรแกรมคอมพิวเตอร์ Arduino IDE ดังแสดงในตารางที่ 1 และขั้นตอนการคำนวณในรูปที่ 1

คุณสมบัติอากาศชื้น	สมการและคำสั่งที่ใช้ในแบบจำลอง
ความดันบรรยากาศ (P _{atm})	101.325(1 – 2.25577 x 10 ⁻⁵ H) ^{5.2559}
อณหภูมิจุดน้ำค้าง (T _{db})	$T_{\mu} = \frac{243.12 \left[ln \left(\frac{RH}{100} \right) + \frac{17.62 T_{db}}{243.12 + T_{db}} \right]}{243.12 + T_{db}}$
9 9 9 ° COS	$17.62 - \left[ln \left(\frac{RH}{100} \right) + \frac{17.62 T_{db}}{243.12 + T_{db}} \right]$
	$T_{wb} = (aT_{db} + bT_{dp}) / (a + b)$
อุณหภูมิกระเปาะเปียก (T _{wb})	$a = 0.000066P_{atm}$
	$b = 409.8P_W / (T_{dp} + 273.15)^2$
อัตราส่วนความชื้น (@)	0.621945[P _W / (P _{atm} – P _W)]
ปริมาตรจำเพาะ ($oldsymbol{\mathcal{V}}_{a}$)	R _{da} T [′] _{db} [1 + (1.607858⊕)] / P _{atm}
เอนทัลปี (h _a)	$1.006T_{db} + \Omega(2,501.1 + 1.8057T_{db})$

ตารางที่ 1 การคุณสมบัติอากาศชื้นจากความดันบรรยากาศ อุณหภูมิกระเปาะแห้งและเปียก

3. โปรแกรมตรวจวัดคุณสมบัติอากาศชื้น

การพัฒนารหัสโปรแกรมคอมพิวเตอร์ Arduino IDE ในการสร้างโปรแกรมคุณสมบัติอากาศชื้น ที่มีการรับค่า อุณหภูมิกระเปาะแห้ง (T_{db}) และความชื้นสัมพัทธ์ของอากาศ (RH) และค่าความสูงเหนือระดับน้ำทะเล (H) ซึ่งจะ แสดงผลบนจอ LCD โดยผ่านการประมวลผลจากบอร์ดไมโครคอนโทรลเลอร์ตระกูล Arduino จะมีรายละเอียดใน การคำนวณเพื่อหาค่าความดันบรรยากาศ (P_{atm}) อุณหภูมิจุดน้ำค้าง (T_{db}) อุณหภูมิกระเปาะเปียก (T_{wb}) อัตราส่วนความชื้น (**ω**) ปริมาตรจำเพาะ (**v**_a) และเอนทัลปี (h_a) ของอากาศชื้นดังแสดงในแผนผังรูปที่ 1

รูปที่ 1 ขั้นตอนการคำนวณของแบบจำลองทางคณิตศาสตร์ของโปรแกรมอากาศชื้น

ในการพัฒนาโปรแกรมและอุปกรณ์วัดคุณสมบัติอากาศชื้นในครั้งนี้ จะใช้อุปกรณ์เซ็นเซอร์ที่ใช้ในการรับ ค่าข้อมูลขาเข้าและแสดงผลของข้อมูลที่ต้องการดังที่ได้กล่าวไปแล้วข้างต้น ซึ่งจะมีรายละเอียดของอุปกรณ์ ดัง แสดงในตารางที่ 2

อุปกรณ์	หน้าที่	คุณสมบัติ
1. บอร์ดไมโครคอนโทรลเลอร์ Arduino Mega R3	ประมวลผลข้อมูลที่รับได้จาก เซ็นเซอร์	- แรงดันไฟฟ้าภายใน 5 V - แรงดันไฟฟ้าเข้า 7-12 V - Digital Pin 54 ขา - Analog Pin 16 ขา - สัญญาณนาฬิกา 16 MHz
2. จอแอลซีดี (LCD) ขนาด 20 x 4 มีการเหตุ (LCD) ขนาด 20 x 4	ทำหน้าที่แสดงผลของข้อมูล ตามคำสั่งจากบอร์ด ไมโครคอนโทรลเลอร์	- แรงดันไฟฟ้าเข้า 5 V - จำนวนตัวอักษร 20 ตัว 4 บรรทัด

ตารางที่ 2 วัสดุอุปกรณ์ที่ใช้ในการพัฒนาโปรแกรมและอุปกรณ์วัดคุณสมบัติอากาศชื้น

อุปกรณ์	หน้าที่	คุณสมบัติ
3. LCD adapter I ² C	ทำหน้าที่ช่วยเสริมการใช้งาน ของโมดูล LCD ในด้านการลด จำนวนขาต่อสัญญากับบอร์ด ไมโครคอนโทรลเลอร์	- แรงดันไฟฟ้าเข้า 5 V
4. DHT22 (AM2302)	เป็นเซ็นเซอร์ที่ใช้วัดค่าอุณหภูมิ กระเปาะแห้งและค่าความชื้น สัมพัทธ์	 - แรงดันไฟฟ้าเข้า 3.3-6 V - ช่วงค่าความชื้นสัมพัทธ์ที่วัดได้ 0 ถึง 100% (±2%) - ช่วงค่าอุณหภูมิกระเปาะแห้งที่วัด ได้ -40 ถึง 80 °C (±0.5 °C)

ในส่วนของการพัฒนารหัสโปรแกรมและอุปกรณ์เพื่อการวัดค่าคุณสมบัติอากาศขึ้นในครั้งนี้ จะเลือกใช้ โปรแกรม Arduino ซึ่ง Arduino เป็นโปรแกรมทางคอมพิวเตอร์และฮาร์ดแวร์ที่มีลักษณะเป็น Open source กล่าวคือสามารถดาวน์โหลดตัวโปรแกรมไปพัฒนาต่อยอดได้โดยไม่ต้องเสียค่าใช้จ่าย ซึ่งในปัจจุบันเป็นเทคโนโลยีที่ ได้รับความนิยมเป็นอย่างมากในการประยุกต์ใช้รับส่งค่าสัญญาณจากเซ็นเซอร์อิเล็กทรอนิกส์ โดยในส่วนของด้าน การวัดทางพลังงานทดแทนต่าง ๆ ล้วนมีความจำเป็นที่จะต้องมีการใช้เซ็นเซอร์อิเล็กทรอนิกส์ โดยในส่วนของด้าน การวัดทางพลังงานทดแทนต่าง ๆ ล้วนมีความจำเป็นที่จะต้องมีการใช้เซ็นเซอร์อิเล็กทรอนิกส์ ซึ่งส่วนมากจะ ค่อนข้างมีราคาสูงเมื่อทำการซื้ออุปกรณ์หรือโปรแกรมสำเร็จรูปมาใช้ ดังนั้นเพื่อเป็นการลดราคาค่าใช้จ่ายดังกล่าว เทคโนโลยี Arduino จึงเข้ามามีบทบาทสำคัญในการพัฒนาการสร้างโปรแกรมและอุปกรณ์ที่ใช้ในการวัดคุณสมบัติของ อากาศชื้นครั้งนี้ จึงได้ทำการนำ Arduino มาบูรณาการใช้ทั้งทางด้านโปรแกรมทางคอมพิวเตอร์และฮาร์ดแวร์ ซึ่ง จะมีขั้นตอนการติดตั้ง การเริ่มต้นใช้งาน การทดลองใช้งานกับอุปกรณ์ต่าง ๆ ตลอดจนการพัฒนารหัสโปรแกรม เพื่อใช้กับการวัดคุณสมบัติของอากาศชื้น ดังรายละเอียดในหัวข้อต่อไปนี้

3.1 การติดตั้งโปรแกรม Arduino

ในการติดตั้งโปรแกรม Arduino จะมีขั้นตอนและรายละเอียดดังต่อไปนี้

 เข้าไปยังหน้าเว็บเพจของ Arduino "https://www.arduino.cc/en/Main/Software" แล้วทำการ ดาวน์โหลดโดยการคลิกเมาส์ไปยัง "Windows Installer" ดังรูปที่ 2

รูปที่ 2 หน้าเว็บเพจในส่วนของการดาวน์โหลดโปรแกรม

2) คลิกที่ไอคอน "JUST DOWNLOAD" ดังรูปที่ 3 ซึ่งหากต้องการดาวน์โหลดในแบบที่มีการบริจาคเงิน ให้แก่องค์กร ให้คลิก "CONTRIBUTE & DOWNLOAD"

รูปที่ 3 หน้าเว็บเพจส่วนของการดาวน์โหลด

 เมื่อดาวน์โหลดเสร็จแล้ว จะได้ไฟล์ที่ทำการดาวน์โหลดที่มีชื่อว่า "arduino-1.8.5-windows.exe" จากนั้นให้ทำการเปิดไฟล์และคลิกที่ไอคอน "I Agree" เพื่อทำการเริ่มติดตั้งโปรแกรม Arduino IDE ซึ่งในส่วนที่ นำมาแสดงตัวอย่างการติดตั้ง จะเป็นโปรแกรม Arduino IDE เวอร์ชัน 1.8.5 ดังรูปที่ 4

Arduino Setup: License Agreement Setup: License Agreement befo Constraint of the agreement, did: 1 Automatic agreement, distrat, did: 1 Automatic agreement,	e installing Arduino. If you Agree.	×
version 3, c9 June 2007 Copyright (C) 2007 Free Software Foundation, Iz Devryone is permitted to copy and distribute vert document, but changing it is not allowed. This version of the GRU Leaser General Public Lica and conditions of version 3 of the GRU Learerul Public by the additional permissions listed below.	c. < <u>http://fsf.org/></u> watim copies of this license inse incorporates the terms ablic License, supplemented	4 Da
Cancel Nullsoft Instal System v2.0	TAg	ee)

รูปที่ 4 หน้าต่างส่วนของการเริ่มติดตั้ง

4) คลิกที่ไอคอน "Next >" เพื่อตอบตกลงในส่วนของขั้นตอนถัดไป ดังรูปที่ 5

รูปที่ 5 หน้าต่างของส่วนตัวเลือกติดตั้งโปรแกรม

5) เลือกโฟลเดอร์ที่ต้องการทำการติดตั้งโปรแกรม Arduino IDE เมื่อทำการเลือกโฟลเดอร์เสร็จเรียบร้อย แล้ว ให้คลิกที่ไอคอน "Install" ดังรูปที่ 6

Arduino Setup: Installation Folder		0	×	
Setup will install Arduino in the following f folder, click Browse and select another for installation.	folder. To install older. Click Instal	in a different I to start the		
C:(Program Files (x86)\Arduino		Browse	1	15
Space required: 420.648 Space available: 222.768				
Cancel Nulsoft Instal System v3.0	< Back	Insta)	

รูปที่ 6 หน้าต่างการเลือกโฟลเดอร์ในการติดตั้ง

6) รอให้โปรแกรมทำการติดตั้งจนแล้วเสร็จ (สามารถตรวจสอบความก้าวหน้าในการติดตั้งได้โดยการคลิกที่ ไอคอน Show details) ดังรูปที่ 7

Arduino Setup: Installing - X	
Show details	
	F
Cancel Nulsoft Instal System v3.0 < Back Cone	

7) เมื่อโปรแกรมติดตั้งเสร็จแล้ว บรรทัดสุดท้ายจะแสดงคำว่า "Completed" จากนั้นให้คลิกไอคอน "Close" เพื่อทำการปิดโปรแกรม ซึ่งเป็นอันสิ้นสุดขั้นตอนของการติดตั้ง ดังรูปที่ 8

💿 Arduino Setup: Completed — 🗆 🛛
Completed
create shortcut et Programeana photosorephinuums pharement program.
Createry (balance also also the Advance and the Advance also also also also also also also also
Createry position always and a second and a second array of a seco

รูปที่ 8 ข้อความที่แสดงเมื่อทำการติดตั้งโปรแกรมเสร็จ

3.2 เริ่มต้นการใช้งานเพื่อการพัฒนารหัสโปรแกรมคุณสมบัติอากาศชื้น

ในการเริ่มต้นใช้งานโปรแกรม Arduino IDE เพื่อการพัฒนารหัสโปรแกรมคุณสมบัติอากาศชื้น จะมีขั้นตอน และรายละเอียดดังต่อไปนี้

1) เปิดโปรแกรม Arduino IDE โดยการดับเบิลคลิกที่ไอคอนโปรแกรม Arduino ดังรูปที่ 9

รูปที่ 9 เริ่มต้นการใช้งานโปรแกรม Arduino

 2) ให้สังเกตหน้าต่างของส่วนโปรแกรม Arduino IDE ดังรูปที่ 10 จะสังเกตเห็นคำสั่งภายใน (ในที่นี้ใช้ภาษา C ในการเขียนโปรแกรมและคำสั่ง) ซึ่งได้แบ่งดังนี้

ส่วนที่ 1 ส่วนของคำสั่งการตั้งค่า (void setup) เป็นส่วนที่เขียนคำสั่งลงไปโดยการเขียนคำสั่งที่ทำงานเพียง ครั้งเดียว และคำสั่งจะต้องอยู่ภายในสัญลักษณ์ "{ }" เท่านั้น

ส่วนที่ 2 ส่วนของคำสั่งที่วนจนกว่าจะทำการปิดระบบ (void loop) และคำสั่งจะต้องอยู่ภายในสัญลักษณ์ "{ }" เท่านั้น

 ทำการติดตั้งไลบรารี (Library) ที่ต้องการใช้งาน (ไลบรารี คือ หน่วยคำสั่งย่อยที่ผู้ใช้สามารถทำการดึง คำสั่งพิเศษจากไลบรารีนั้น ๆ ได้) ในที่นี้ได้ใช้ไลบรารีของเซนเซอร์วัดอุณหภูมิความชื้นสัมพัทธ์ และโมดูล LCD I²C ที่ใช้ในการทำการทดลอง โดยการติดตั้งจะเข้าไปยังหน้าต่างด้วยการคลิกที่ "Sketch" > "Include Library" > "Manage Libraries" ดังรูปที่ 11

รูปที่ 11 เริ่มต้นการติดตั้งไลบรารี

4) ใส่คำสำคัญลงในช่องที่ต้องการค้นหาเพื่อค้นหาไลบรารี (ในขั้นตอนนี้ได้ทำการติดตั้งไลบรารี DHT22 ซึ่ง เป็นเซนเซอร์ที่ใช้ในการทดลอง) เมื่อค้นหาเจอแล้วให้คลิกที่ไอคอน "Install" ดังรูปที่ 12

Type All V Topic All	V DHT
DHT sensor library by Adafruit Version 1 Arduino library for DHT11, DHT22, etc T More info	.3.0 INSTALLED emp & Humidity Sensors Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors
Select version V Install	
Arduino Temp & Humidity Sensors for DI supports 0.5HZ(DHT22) or 1HZ(DHT11) sa	HTT1 and DHT22. Simple C++ code with lots of comments, strictly follow the standard DHT proto mpling rate.

รูปที่ 12 หน้าต่างของส่วนที่ทำการติดตั้งไลบรารี DHT22

5) ทำการติดตั้งไลบรารีของ LiquidCrytal I2C ซึ่งจะติดตั้งโดยการคลิกที่ "Install" รูปที่ 13

รูปที่ 13 หน้าต่างของส่วนที่ทำการติดตั้งไลบรารี LiquidCrytal I2C

3.3 การทดลองการใช้งานอุปกรณ์ร่วมกับไลบรารี

สำหรับการทดลองการใช้งานอุปกรณ์ร่วมกับไลบรารีที่ทำการติดตั้งไปแล้วข้างต้น จะมีรายละเอียดดังขั้นตอน ต่อไปนี้

1) ทำการทดลองการใช้งานของโมดูลจอแสดงผล LCD โดยการคลิกที่ "File" > "Examples" > "LiquidCrystal I2C" > "HelloWorld" ดังรูปที่ 14

รูปที่ 14 เลือกโปรแกรมตัวอย่างของ LCD I²C

 เมื่อทำการเปิดโปรแกรมทดลองของ LCD I²C เสร็จแล้วหลังจากนั้นให้สังเกตที่ส่วนของคำสั่งภายใน จะ พบว่ามีส่วนที่เขียนทั้งหมด 4 ส่วน ดังแสดงในรูปที่ 15 คือ

ส่วนที่ 1 เป็นส่วนที่ใช้ในการดึงชุดข้อมูลไลบรารีโดยจะมีคำสั่ง "#include" อยู่ข้างหน้าชื่อไฟล์ไลบรารีที่อยู่ ใน "<>" เสมอ

ส่วนที่ 2 เป็นส่วนที่เป็นชุดคำสั่งที่ทำงานครั้งเดียวต่อการเปิดระบบหนึ่งครั้งและที่สำคัญ จะเป็นคำสั่ง "void setup()" และคำสั่งในการทำงานจะอยู่ภายใต้เครื่องหมาย "{ }" เสมอ

ส่วนที่ 3 เป็นส่วนที่เป็นชุดคำสั่งที่ทำงานวนซ้ำตลอดเมื่อเปิดระบบจะเป็นคำสั่ง "void loop()" และคำสั่งใน การทำงานจะอยู่ภายใต้เครื่องหมาย "{ }" เสมอ

ส่วนที่ 4 เป็นส่วนที่ทำหน้าที่เป็นข้อความซึ่งไม่มีผลต่อคำสั่งภายในโปรแกรมโดยจะมีเครื่องหมาย "//" อยู่ หน้าข้อความเสมอ

S HelloWorld Arduino 1.8.5		
File Edit Sketch Tools Help		
HelloWorld		
V/PROBOT V/Compatible with the Arduino IDE 1.0 //Library version1.1 tinolude dire.b> 1 tinolude < <u>LiquidOrystal_ICC.b></u>		
LiquidCrystal_I2C lcd(0x27,20,4); // set the LCD address to 0x27 for a 16 chars and 2 line display		
<pre>testsp() i lod.init(); lod.init(); lod.init(); </pre>	4	
// Print a message to the LCD. lod.backlight(); lod.setCorsor(3,0); lod.grint("Belle, world("); lod.grint("Belle, world(");		
<pre>lod.setCursor(1,/,1) lod.setCursor(0,2) lod.setCursor(0,2) lod.setCursor(2,3); lod.setCursor(2,3);</pre>		
AUG-PERIC FORMER BY BU-YUMIN ();		
void loop() 3		

รูปที่ 15 ชุดคำสั่งโปรแกรมทดลองของ LCD I²C

 ทำการเลือกรุ่นของบอร์ดให้ตรงกันที่ใช้ในการทดลอง (ในที่นี้ได้ใช้บอร์ด Arduino Mega R3 ในการ ทดลอง) ดังรูปที่ 16

รูปที่ 16 การเลือกรุ่นบอร์ดในการทดลอง

4) เลือกพอร์ทที่เชื่อมต่อคอมพิวเตอร์ไปยังบอร์ด (ในที่นี้ได้ใช้พอร์ทชื่อ COM3) ดังรูปที่ 17

รูปที่ 17 การเลือกพอร์ทที่เชื่อมต่อกับบอร์ด

5) ทำการอัพโหลดโปรแกรมไปยังบอร์ดโดยการคลิกที่เครื่องหมายอัพโหลดของโปรแกรม Arduino IDE ดัง รูปที่ 18

รูปที่ 18 การอัพโหลดโปรแกรมไปยังบอร์ดชุดทดลอง

6) สังเกตบอร์ดทดลองที่โมดูลจอ LCD แล้วสังเกตข้อความดังรูปที่ 19

รูปที่ 19 ข้องความที่แสดงยังโมดูล LCD

 ทำการทดลองเซนเซอร์ DHT22 โดยคลิกที่ File > Examples > DHT sensor library > DHTtester แล้วทำการอัพโหลดโปรแกรมเข้าไปยังบอร์ดทดลอง และสังเกตค่าผ่านพอร์ทอนุกรม (Serial Mornitor) ดังรูปที่
 20

รูปที่ 20 โปรแกรมทดลองของเซนเซอร์ DHT22

8) สังเกตค่าผ่านพอร์ทอนุกรม หากในกรณีที่ต่อเซนเซอร์ไม่ถูกต้องจะปรากฏข้อความ "Failed to read from DHT sensor!" และกรณีที่ที่เซนเซอร์ต่อเข้ากับบอร์ดทดลองถูกต้องจะแสดงผล ดังรูปที่ 21

Second (Arguino/Genuino Mega or Mega 2560)	
Temperature: 25 40	
Humidity: 90-30	
Temperature: 25 40	
Humidity: 90-30	
Temperature: 25.40	
Humidity: 90.30	
Temperature: 25.40	
Humidity: 90.30	
Temperature: 25.40	
Humidity: 90.30	
Temperature: 25.40	
Humidity: 90.40	
Temperature: 25.40	
Humidity: 90.40	
Temperature: 25.40	
Humidity: 90.40	
Temperature: 25.40	
Humidity: 90.30	
Temperature: 25.40	
Humidity: 90.30	
Temperature: 25.40	
Humidity: 90.30	
Temperature: 25.40	
Humidity: 90.30	
Pemperature: 25.40	
Humidity: 90.30	

รูปที่ 21 หน้าต่างแสดงผลของเซนเซอร์ DHT22

3.4 การพัฒนารหัสโปรแกรม Arduino เพื่อการตรวจวัดค่าคุณสมบัติอากาศขึ้น

การพัฒนารหัสโปรแกรม Arduino เพื่อการตรวจวัดค่าคุณสมบัติอากาศชื้น

 ทำการเขียนคำสั่งลงในโปรแกรม Arduino IDE เพื่อหาคุณสมบัติของอากาศจากการวัดค่าอุณหภูมิและ ความชื้นสัมพัทธ์ของอากาศ โดยมีการเขียนคำสั่งและรายละเอียดดังนี้

#include <wire.h></wire.h>	//เรียกใช้ไลบรารีของ Wire
#include <liquidcrystal_i2c.h></liquidcrystal_i2c.h>	//เรียกใช้ไลบรารีของ LCD I ² C
#include "DHT.h"	//เรียกใช้ไลบรารีของ DHT
#define DHTPIN 2	//ตั้งชื่อ DHTPIN แทน 2
#define DHTTYPE DHT22	//ตั้งชื่อ DHTTYPE แทน DHT22
#define High 310	//ตั้งชื่อ High แทน 310 *ความสูงจากน้ำทะเล
#define R 0.287042	//ตั้งชื่อ R แทน 0.287042
#define C1 -5.8002206*pow(10,-3)	//ตั้งชื่อ C1-C6 เป็นจำนวนใด ๆ ที่ใช้ในสมการ

#define C2 1.3914993

#define C3 -4.8640239*pow(10,-2)
#define C4 4.1764768*pow(10,-5)
#define C5 -1.4452093*pow(10,-8)
#define C6 6.5459673
#define e 2.71828
#define tim 5000
LiquidCrystal_I2C lcd(0x27, 20, 4);
DHT dht(DHTPIN, DHTTYPE);

//ตั้งชื่อ e แทน 2.71828 *ค่าคงที่ //ตั้งชื่อ tim แทน 5000 *ใช้ในการหน่วงเวลา //ตั้งค่า LCD I²C เป็นขนาด 20 x 4 ชื่อ lcd //ตั้งค่าเซนเซอร์ DHT ต่อสัญญาณที่ขา DHTPIN และเป็นชนิด DHTTYPE ชื่อ dht

//เริ่มการใช้งานของ LCD

//เริ่มการใช้งาน DHT22

//สั่งใหไฟพื้นหลังสว่าง

//ไปยังฟังก์ชัน check

//ไปยังฟังก์ชัน peasur

//ไปยังฟังก์ชัน temp dp

//ไปยังฟังก์ชัน temp wb

//ไปยังฟังก์ชัน hum ratio

//ไปยังฟังก์ชัน Enthalpy

//ไปยังฟังก์ชัน viloc

//ไปยังฟังก์ชัน show

float T, H, P_atm, P_w, P_ws, tem_dp, tem_wp, hum_r, v, h; //สร้างตัวแปรชนิด float

void setup() { lcd.init(); dht.begin(); lcd.backlight();

}

voic	l loop() {
	check();
	peasur();
	temp_dp();
	temp_wb();
	hum_ratio();
	viloc();
	Enthalpy();
	show();

}

```
void check() {
  T = dht.readTemperature();
  H = dht.readHumidity();
```

//ฟังก์ชัน check ส่วนของการรับค่าจากเซนเซอร์ //คำสั่งให้รับค่าอุณหภูมิเขามาเก็บที่ตัวแปร T //คำสั่งให้รับค่าความชื้นสัมพัทธ์เขามาเก็บที่ตัวแปร

//เงื่อนไขถ้าไม่มีการเชื่อมต่อกับเซนเซอร์ if (isnan(h) || isnan(t) || isnan(f)) { Serial.println("Failed to read from DHT sensor!"); //แสดงข้อความไปยัง Serial monitor return; } //หน่วงเวลา 0.5 วินาที delay(500); //ฟังก์ชันคำสั่งของการคำนวณหาค่าความดัน void peasur() { บรรยากาศ P atm = 101.325 * pow((1 - ((2.25577 * 0.00001) * High)), 5.2559); P ws = e * ((C1 / T) + C2 + (C3 * T) + (C4 * pow(T, 2)) + (C5 * pow(T, 3)) + (C6 * log(T)));P w = P ws * (H / 100);//ฟังก์ชันคำสั่งของการคำนวณหาค่าอุณหภูมิจุด void temp dp() { น้ำค้าง float B = log(H / 100);tem dp = 243.12 * (B + ((17.62 * T) / (243.12 + T))) / (17.62 - B - ((17.62 * T) / (243.12 + T)));//ฟังก์ชันคำสั่งของการคำนวณหาค่าอุณหภูมิ void temp wb() { กระเปาะเปียก float a = 0.000066 * P atm; float b = (409.8 * P w) / pow((T + 273.15), 2);tem wp = ((a * T) + (b * tem dp)) / (a + b);//ฟังก์ชันคำสั่งของการคำนวณหาค่าอัตราส่วน void hum ratio() { ความชื้นในอากาศ

hum r = 0.621945 * (P w / (P atm - P w));

}

}

}

}

```
//ฟังก์ชันคำสั่งของการคำนวณหาค่าปริมาตร
void viloc() {
                                                          จำเพาะ
    v = R * (T + 273.15) * ((1 + (1.607858 * hum_r)) / P_atm);
}
                                                        //ฟังก์ชันคำสั่งของการคำนวณหาค่าเอนทัลปีของ
void Enthalpy() {
                                                         อากาศ
    h = (1.006 * T) + (hum r * (2501.1 + (1.8057 * T)));
}
                                                        //ฟังก์ชันคำสั่งของการแสดงผลไปยังโมดูล LCD
void show() {
                                                        //คำสั่งล้างหน้าจอที่ 1
    lcd.clear();
                                                        //คำสั่งตั้งค่าตัวอักษรที่จะทำการแสดงในตัวอักษรที่
    lcd.setCursor(0, 0);
                                                          0 แถว 0
                                                        //แสดงข้อความ "Relative Humidity" โมดูล LCD
    lcd.print("Relative Humidity");
                                                        //คำสั่งตั้งค่าตัวอักษรที่จะทำการแสดงในตัวอักษรที่
     lcd.setCursor(0, 1);
                                                          0 แถว 1
                                                        //แสดงค่าความชื้นสัมพัทธ์ที่เก็บไว้ในตัวแปรที่ชื่อว่า
    lcd.print(H);
                                                         Н
                                                        //แสดงสัญลักษณ์หน่วยของข้อความก่อนหน้า
    lcd.print(" %");
                                                        //คำสั่งตั้งค่าตัวอักษรที่จะทำการแสดงในตัวอักษรที่
     lcd.setCursor(0, 2);
                                                         0 แถว 2
                                                        //แสดงข้อความ "Dry-bulb Temp" โมดูล LCD
    lcd.print("Dry-bulb Temp");
                                                        //คำสั่งตั้งค่าตัวอักษรที่จะทำการแสดงในตัวอักษรที่
    lcd.setCursor(0, 3);
                                                         0 แถว 3
                                                        //แสดงค่าอุณหภูมิกระเปาะแห้งที่เก็บไว้ในตัวแปรที่
    lcd.print(T);
                                                          ชื่อว่า T
    lcd.print(" C");
                                                        //หน่วงเวลาที่มีค่าเท่ากับ tim หน่วยเป็น ms
     delay(tim);
```

//คำสั่งล้างหน้าจอเพื่อเตรียมแสดงข้อมูลในหน้าจอ

lcd.clear();

lcd.setCursor(0, 0);

lcd.print("Barometric Pressure");

lcd.setCursor(0, 1);

lcd.print(P_atm);

lcd.print(" kPa");

lcd.setCursor(0, 2);

lcd.print("Dew point Temp");

lcd.setCursor(0, 3);

lcd.print(tem_dp);

lcd.print(" C");

delay(tim);

lcd.clear();

//คำสั่งล้างหน้าจอเพื่อเตรียมแสดงข้อมูลในหน้าจอ ที่ 3

lcd.setCursor(0, 0); lcd.print("Wet-bulb Temp"); lcd.setCursor(0, 1); lcd.print(tem_wp); lcd.print(" C"); lcd.setCursor(0, 2); lcd.print("Humidity Ratio"); lcd.setCursor(0, 3); lcd.print(hum_r); lcd.print(""); delay(tim); lcd.clear();

//คำสั่งล้างหน้าจอเพื่อเตรียมแสดงข้อมูลในหน้าจอ ที่ 4

lcd.setCursor(0, 0); lcd.print("Specific Volume"); lcd.setCursor(0, 2); ที่ 2

```
lcd.print("Ethalpy");
lcd.setCursor(0, 1);
lcd.print(v);
lcd.print(" m3/kg");
lcd.setCursor(0, 3);
lcd.print(h);
lcd.print();
lcd.print(" kJ/kg");
delay(tim);
```

}

 เมื่อทำการเขียนโปรแกรมเป็นที่เรียบร้อยแล้ว ให้อัพโหลดโปรแกรมเข้าไปยังบอร์ดทดลองแล้วสังเกตที่ หน้าจอ LCD จะแสดงผลดังรูปที่ 22

รูปที่ 22 หน้าจอแสดงผลของโปรแกรมคุณสมบัติอากาศชื้น

3.5 การต่ออุปกรณ์วัดค่าคุณสมบัติอากาศชื้น

สำหรับการออกแบบอุปกรณ์ภายนอกหรือฮาร์ดแวร์ที่ใช้วัดคุณสมบัติอากาศชื้นในครั้งนี้ จะมีแผนภาพการต่อ วงจรของวัสดุอุปกรณ์ต่าง ๆ ดังที่ได้กล่าวไปแล้วในตารางที่ 2 ดังแสดงในรูปที่ 23 ซึ่งหลังจากทดสอบระบบการวัด ค่าคุณสมบัติอากาศชื้นที่มีการต่ออุปกรณ์ดังกล่าวกับรหัสโปรแกรมที่พัฒนาภายใต้โปรแกรมทางคอมพิวเตอร์ของ Arduino IDE สำเร็จแล้ว จะทำการติดตั้งอุปกรณ์ไว้ในกล่องเพื่อความเรียบร้อยและสะดวกต่อการใช้งาน ดังแสดง ในรูปที่ 24 ซึ่งเมื่อติดตั้งแล้วเสร็จจะได้กล่องโปรแกรมวัดคุณสมบัติอากาศชื้น ดังแสดงในรูปที่ 25

รูปที่ 23 แผนภาพการต่อวงจรของวัสดุอุปกรณ์ต่าง ๆ ที่ใช้วัดค่าคุณสมบัติอากาศชิ้น

รูปที่ 24 การต่อวงจรของอุปกรณ์ต่าง ๆ ที่ใช้วัดค่าคุณสมบัติอากาศชิ้น

รูปที่ 25 กล่องโปรแกรมคุณสมบัติอากาศชื้น

3.6 วิธีการใช้งานโปรแกรมคุณสมบัติอากาศชื้น

สำหรับวิธีการใช้งานโปรแกรมคุณสมบัติอากาศชื้นที่ได้ทำการสร้างดังที่ได้กล่าวถึงรายละเอียดไว้แล้งข้างต้น จะมีวิธีการใช้งานดังนี้

1) ทำการต่อแหล่งจ่ายไฟกระแสตรงขนาด 5 V ให้กับกล่องโปรแกรมวัดค่าคุณสมบัติอากาศชื้น

 2) เมื่อกล่องโปรแกรมเริ่มทำงาน จะสังเกตให้ไฟและตัวอักษรขึ้นบริเวณหน้าจอแอลซีดี ดังแสคงในรูปที่ 26 ถึงรูปที่ 29 ซึ่งจะแสดงผลค่าความชื้นสัมพัทธ์ (Relative Humidity, %) อุณหภูมิกระเปาะแห้ง (Dry-bulb Temp, C) ความดันบรรยากาศ (Barometric Pressure, kPa) อุณหภูมิจุดน้ำค้าง (Dew point Temp, C) อุณหภูมิกระเปาะเปียก (Wet-bulb Temp, C) อัตราส่วนความชื้น (Humidity Ratio) ปริมาตรจำเพาะ (Specific Volume, m3/kg) และค่าเอนทัลปี (Enthalpy, kJ/kg) ตามลำดับ

รูปที่ 26 ส่วนหน้าจอแสดงผล (1)

รูปที่ 27 ส่วนหน้าจอแสดงผล (2)

รูปที่ 28 ส่วนหน้าจอแสดงผล (3)

รูปที่ 29 ส่วนหน้าจอแสดงผล (4)

เอกสารอ้างอิง

[1] นัฐพร ไชยญาติ. (2560). การนำความร้อนทิ้งกลับคืน (พิมพ์ครั้งที่ 6). เชียงใหม่: สำนักพิมพ์มหาวิทยาลัยแม่
 โจ้.

ภาคผนวก

ภาคผนวก ก. รายละเอียดวัสดุอุปกรณ์ที่ใช้ในโปรแกรมคุณสมบัติอากาศขึ้น

1) บอร์ดไมโครคอนโทรลเลอร์ Arduino Mega 2560

Arduino Mega 2560 เป็นบอร์ดรุ่นใหญ่ในตระกูลของบอร์ดไมโครคอนโทรลเลอร์ Arduino ซึ่งมีคุณสมบัติ เพิ่มขึ้นจากบอร์ด Arduino Uno R3 จะใช้ซิพรุ่น ATmega2560 ที่มีหน่วยความจำแฟลช 256 KB แรม 8 KB ใช้ ไฟเลี้ยง 7-12 V แรงดันของระบบอยู่ที่ 5 V มี Digital Input/Output มากถึง 54 ขา (เป็น PWM ได้ 14 ขา) มี Analog Input 16 ขา Serial UART 4 ชุด I2C 1 ชุด SPI 1 ชุด ซึ่งจะเขียนโปรแกรมบนโปรแกรม Arduino IDE และโปรแกรมผ่าน USB เหมาะสำหรับผู้ที่สนใจเริ่มต้นที่จะเรียนรู้การพัฒนาไมโครคอนโทรลเลอร์ที่ต้องการบอร์ด Arduino ที่มีหน่วยความจำและขาสัญญาณต่าง ๆ ที่เพียงพอต่อใช้งานมากขึ้น ทั้งนี้จะมีรายละเอียดเพิ่มเติมดัง แสดงในตารางที่ ก.1 และมีแผนผังขาสัญญาณดังแสดงในรูปที่ ก.1

Microcontroller	ATmega2560
Operating Voltage	5 V
Input Voltage (Recommended)	7-12 V
Input Voltage (Limits)	6-20 V
Digital I/O Pins	54 (of which 14 provide PWM output , 4 UART TTL)
Analog Input Pins	16
DC Current per I/O Pin	40 mA
DC Current for 3.3 V Pin	50 mA
Flash Memory	256 KB of which 8 KB used by bootloader
SRAM	8 KB
EEPROM	4 KB
Clock Speed	16 MHz

ตารางที่ ก.1 รายละเอียด Arduino MEGA 2560 R3 [www.arduinoall.com]

รูปที่ ก.1 แผนผังขาสัญญาณของบอร์ด Arduino Mega 2560

2) เซ็นเซอร์วัดอุณหภูมิกระเปาะแห้งและความชื้นสัมพัทธ์ DHT22/AM2305

โมดูล DHT22 หรือ AM2302 มีราคาถูก ให้ค่าเป็นแบบดิจิทัล และใช้ขาสัญญาณดิจิทัลเพียงเส้นเดียวในการ เชื่อมต่อแบบบิตอนุกรมสองทิศทาง (Serial Data, Bi-Directional) โดยนำมาเชื่อมต่อกับบอร์ด Arduino เพื่อ อ่านค่าจากเซ็นเซอร์ ซึ่งจะมีข้อมูลเชิงเทคนิค (Technical details) ดังต่อไปนี้

- ใช้แรงดันไฟเลี้ยงได้ในช่วง: 3.3-5.5 VDC ดังนั้นจึงใช้ได้กับ 3.3 V และ 5 V ได้
- วัดอุณหภูมิได้ในช่วง: -40 ถึง 80 ℃ (ความแม่นยำ ±0.5 ℃)
- วัดความชื้นสัมพัทธ์ได้ในช่วง: 0 ถึง 100% (ความแม่นยำ 2-5%)
- อัตราการวัดสูงสุด: 0.5 Hz

- ขาเชื่อมสัญญาณเป็นแบบ 4 ขา (0.1 inch/2.54 mm spacing) โดย Pin 1 = VCC, Pin 2 = SDA (Serial data, bidirectional), Pin 3 = N.C. (Not Connect) และ Pin 4 = GND

จากข้อมูลเชิงเทคนิคดังที่ได้กล่าวไปข้างต้น โมดูล DHT22 จะมีผังการต่อขาสัญญาณดังแสดงในรูปที่ ก.2

รูปที่ ก.2 ตำแหน่งและรายละเอียดการต่อขาสัญญาณของ DHT22 [http://www.myarduino.net]

3) จอแอลซีดีที่มีการเชื่อมต่อแบบ I²C

จอ LCD ที่มีการเชื่อมต่อแบบ I²C หรือเรียกอีกอย่างว่าการเชื่อมต่อแบบ Serial จะเป็นจอ LCD ธรรมดา ทั่วไปที่มาพร้อมกับบอร์ด I²C Bus โดยตรงหรือสามารถเชื่อมต่อภายหลังได้ ซึ่งเหตุผลที่ทำการเชื่อมต่อกับ I²C ก็ เพื่อต้องการใช้งานที่สะดวกยิ่งขึ้น (ลดจำนวนขาสัญญาณในการต่อกับบอร์ดไมโครคอนโทรลเลอร์ลง) และยังมา พร้อมกับ VR สำหรับปรับความเข้มของจอ ในรูปแบบ I²C ซึ่งจะใช้ขาในการเชื่อมต่อกับบอร์ด ไมโครคอนโทรลเลอร์เหลือเพียง 4 ขา (ซึ่งจอแอลซีดีที่ไม่มีการต่อกับ I²C จะเป็นการต่อสัญญาณแบบ Parallel ซึ่ง จะใช้ 16 ขาในการต่อ) ทั้งนี้ลักษณะการต่อสายสัญญาณจาก I²C ไปยังบอร์ด จะมีลักษณะดังแสดงในรูปที่ ก.3

	1. Blacklight Switch 2. Contrast Adjustment 3. 12C pin interface		
Pin No	Symbol	Description	
1	GND	Ground	
2	VCC	+5VDC	
3	SDA	Serial Data	
4	SCL	Serial Clock	

รูปที่ ก.3 ขาที่ในการเชื่อมต่อของ I²C ไปยังบอร์ด Arduino [http://www.thaieasyelec.com]